P3383 【模板】线性筛素数
埃氏筛法
埃氏筛法的基本思想 :从2开始,将每个质数的倍数都标记成合数,以达到筛选素数的目的。
代码 :
代码 :
int visit[maxn];
void Prime(){
mem(visit,0); //初始化都是素数
visit[0] = visit[1] = 1; //0 和 1不是素数
for (int i = 2; i <= maxn; i++) {
if (!visit[i]) { //如果i是素数,让i的所有倍数都不是素数
for (int j = i*i; j <= maxn; j += i) {
visit[j] = 1;
}
}
}
void Prime(){
mem(visit,0); //初始化都是素数
visit[0] = visit[1] = 1; //0 和 1不是素数
for (int i = 2; i <= maxn; i++) {
if (!visit[i]) { //如果i是素数,让i的所有倍数都不是素数
for (int j = i*i; j <= maxn; j += i) {
visit[j] = 1;
}
}
}
}
这里有一个小优化,j 从 i * i 而不是从 i + i开始,因为 i*(2~ i-1)在 2~i-1时都已经被筛去,所以从i * i开始。
这里有一个小优化,j 从 i * i 而不是从 i + i开始,因为 i*(2~ i-1)在 2~i-1时都已经被筛去,所以从i * i开始。
埃氏筛法的缺陷 :对于一个合数,有可能被筛多次。例如 30 = 2 * 15 = 3 * 10 = 5*6……那么如何确保每个合数只被筛选一次呢?
欧拉筛法
欧拉筛法的基本思想 :在埃氏筛法的基础上,让每个合数只被它的最小质因子筛选一次,以达到不重复的目的。
代码 :
代码 :
int prime[maxn];
int visit[maxn];
void Prime(){
mem(visit,0);
mem(prime, 0);
for (int i = 2;i <= maxn; i++) {
cout<<" i = "<<i<<endl;
if (!visit[i]) {
prime[++prime[0]] = i; //纪录素数, 这个prime[0] 相当于 cnt,用来计数
}
for (int j = 1; j <=prime[0] && i*prime[j] <= maxn; j++) {
// cout<<" j = "<<j<<" prime["<<j<<"]"<<" = "<<prime[j]<<" i*prime[j] = "<<i*prime[j]<<endl;
visit[i*prime[j]] = 1;
if (i % prime[j] == 0) {
break;
}
}
}
int visit[maxn];
void Prime(){
mem(visit,0);
mem(prime, 0);
for (int i = 2;i <= maxn; i++) {
cout<<" i = "<<i<<endl;
if (!visit[i]) {
prime[++prime[0]] = i; //纪录素数, 这个prime[0] 相当于 cnt,用来计数
}
for (int j = 1; j <=prime[0] && i*prime[j] <= maxn; j++) {
// cout<<" j = "<<j<<" prime["<<j<<"]"<<" = "<<prime[j]<<" i*prime[j] = "<<i*prime[j]<<endl;
visit[i*prime[j]] = 1;
if (i % prime[j] == 0) {
break;
}
}
}
1.对于visit[i*prime[j]] = 1 的解释: 这里不是用i的倍数来消去合数,而是把 prime里面纪录的素数,升序来当做要消去合数的最小素因子。
打表观察来理解 :

发现i在消去合数中的作用是当做倍数的。
发现i在消去合数中的作用是当做倍数的。
2.对于 i%prime[j] == 0 就break的解释 :当 i是prime[j]的倍数时,i = kprime[j],如果继续运算 j+1,i * prime[j+1] = prime[j] * k prime[j+1],这里prime[j]是最小的素因子,当i = k * prime[j+1]时会重复,所以才跳出循环。
举个例子 :i = 8 ,j = 1,prime[j] = 2,如果不跳出循环,prime[j+1] = 3,8 * 3 = 2 * 4 * 3 = 2 * 12,在i = 12时会计算。因为欧拉筛法的原理便是通过最小素因子来消除。
举个例子 :i = 8 ,j = 1,prime[j] = 2,如果不跳出循环,prime[j+1] = 3,8 * 3 = 2 * 4 * 3 = 2 * 12,在i = 12时会计算。因为欧拉筛法的原理便是通过最小素因子来消除。
————————————————
版权声明:本文为CSDN博主「彤云望月」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39763472/article/details/82428602

浙公网安备 33010602011771号