Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and
C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will
be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters:
an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
题解:题目有点没说清楚,输出顺序:1.假设前几个条件得出结果。输出第一个结果 2.矛盾结果在顺序不确定之前。
通常会卡在第二个上。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <string>
using namespace std;
const int INF = 0x3fffffff;
int in[100];
int t[100];
bool map[100][100];
bool sflag;
bool iflag;
bool cflag;
bool flag;
char s[100];
void ok(int n,int m,int k)
{
queue<int> q;
for(int i = 0;i < n;i++)
{
t[i] = in[i];
if(t[i] == 0)
{
q.push(i);
}
}
int cnt = 0;
bool f = true;
while(!q.empty())
{
int x = q.front();
q.pop();
s[cnt++] = (char)(x + 'A');
t[x]--;
if(!q.empty())
{
f = false;
}
for(int i = 0;i < n;i++)
{
if(map[x][i])
{
if(--t[i] == 0)
{
q.push(i);
}
}
}
}
if(cnt == n && f)
{
sflag = true;
flag = false;
s[n] = '\0';
return;
}
for(int i = 0;i < n;i++)
{
if(t[i] > 0)
{
iflag = true;
flag = false;
}
}
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m) != EOF && (n + m) != 0)
{
getchar();
char a,e,b;
memset(map,false,sizeof(map));
memset(in,-1,sizeof(in));
int res = 0;
flag = true;
sflag = false;
cflag = false;
iflag = false;
if(1 == n && m == 0)
{
printf("Sorted sequence determined after 0 relations: A.\n");
continue;
}
for(int i = 1;i <= m;i++)
{
scanf("%c%c%c",&a,&e,&b);
if(in[b - 'A'] == -1)
{
in[b - 'A'] = 0;
}
if(in[a - 'A'] == -1)
{
in[a - 'A'] = 0;
}
if(!map[a - 'A'][b - 'A'])
{
map[a - 'A'][b - 'A'] = true;
in[b - 'A']++;
}
if(flag)
{
ok(n,m,i);
res = i;
}
getchar();
}
if(sflag)
{
printf("Sorted sequence determined after %d relations: %s.\n",res,s);
}
else if(iflag)
{
printf("Inconsistency found after %d relations.\n",res);
}
else
{
printf("Sorted sequence cannot be determined.\n");
}
}
return 0;
}