[LeetCode] 697. Degree of an Array 数组的度
Given a non-empty array of non-negative integers nums, the degree of this array is defined as the maximum frequency of any one of its elements.
Your task is to find the smallest possible length of a (contiguous) subarray of nums, that has the same degree as nums.
Example 1:
Input: [1, 2, 2, 3, 1] Output: 2 Explanation: The input array has a degree of 2 because both elements 1 and 2 appear twice. Of the subarrays that have the same degree: [1, 2, 2, 3, 1], [1, 2, 2, 3], [2, 2, 3, 1], [1, 2, 2], [2, 2, 3], [2, 2] The shortest length is 2. So return 2.
Example 2:
Input: [1,2,2,3,1,4,2] Output: 6
Note:
nums.lengthwill be between 1 and 50,000.nums[i]will be an integer between 0 and 49,999.
给一个非空非负整数的数组,找出和整个数组最大度相同的最短的子数组。度是一个数组里数字出现频率的最大值。
解法:首先要知道整个数组的度,可用哈希表进行统计。度最大的子数组里,首尾数字都是这个度的数字时,子数组是最短的,在用一个哈希表保存,某一个数字第一次出现的index和最后一次出现的index。还要注意度相同的数字可能不只一个所以要求这几个数字中最短的。
Java:
public static class Solution2 {
public int findShortestSubArray(int[] nums) {
Map<Integer, Integer> count = new HashMap<>();
Map<Integer, Integer> left = new HashMap<>();
Map<Integer, Integer> right = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
count.put(nums[i], count.getOrDefault(nums[i], 0) + 1);
if (!left.containsKey(nums[i])) {
left.put(nums[i], i);
}
right.put(nums[i], i);
}
int result = nums.length;
int degree = Collections.max(count.values());
for (int num : count.keySet()) {
if (count.get(num) == degree) {
result = Math.min(result, right.get(num) - left.get(num) + 1);
}
}
return result;
}
}
Java:
public int findShortestSubArray(int[] nums) {
if (nums.length == 0 || nums == null) return 0;
Map<Integer, int[]> map = new HashMap<>();
for (int i = 0; i < nums.length; i++){
if (!map.containsKey(nums[i])){
map.put(nums[i], new int[]{1, i, i}); // the first element in array is degree, second is first index of this key, third is last index of this key
} else {
int[] temp = map.get(nums[i]);
temp[0]++;
temp[2] = i;
}
}
int degree = Integer.MIN_VALUE, res = Integer.MAX_VALUE;
for (int[] value : map.values()){
if (value[0] > degree){
degree = value[0];
res = value[2] - value[1] + 1;
} else if (value[0] == degree){
res = Math.min( value[2] - value[1] + 1, res);
}
}
return res;
}
Python:
class Solution(object):
def findShortestSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
counts = collections.Counter(nums)
left, right = {}, {}
for i, num in enumerate(nums):
left.setdefault(num, i)
right[num] = i
degree = max(counts.values())
return min(right[num]-left[num]+1 \
for num in counts.keys() \
if counts[num] == degree)
Python: wo
class Solution(object):
def findShortestSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) < 2:
return len(nums)
degree = collections.Counter()
index = collections.defaultdict(list)
max_degree = 0
max_num = []
for k, v in enumerate(nums):
degree[v] += 1
if degree[v] > max_degree:
max_degree = degree[v]
max_num = []
max_num.append(v)
elif degree[v] == max_degree:
max_num.append(v)
index[v].append(k)
min_dis = float('inf')
for v in max_num:
i, j = index[v][0], index[v][-1]
min_dis = min(min_dis, j - i + 1)
return min_dis
C++:
class Solution {
public:
int findShortestSubArray(vector<int>& nums) {
int n = nums.size(), res = INT_MAX, degree = 0;
unordered_map<int, int> m;
unordered_map<int, pair<int, int>> pos;
for (int i = 0; i < nums.size(); ++i) {
if (++m[nums[i]] == 1) {
pos[nums[i]] = {i, i};
} else {
pos[nums[i]].second = i;
}
degree = max(degree, m[nums[i]]);
}
for (auto a : m) {
if (degree == a.second) {
res = min(res, pos[a.first].second - pos[a.first].first + 1);
}
}
return res;
}
};
C++:
class Solution {
public:
int findShortestSubArray(vector<int>& nums) {
int n = nums.size(), res = INT_MAX, degree = 0;
unordered_map<int, int> m, startIdx;
for (int i = 0; i < n; ++i) {
++m[nums[i]];
if (!startIdx.count(nums[i])) startIdx[nums[i]] = i;
if (m[nums[i]] == degree) {
res = min(res, i - startIdx[nums[i]] + 1);
} else if (m[nums[i]] > degree) {
res = i - startIdx[nums[i]] + 1;
degree = m[nums[i]];
}
}
return res;
}
};

浙公网安备 33010602011771号