E - Reachability in Functional Graph
E - Reachability in Functional Graph
https://atcoder.jp/contests/abc357/tasks/abc357_e
思路
概念:
基环树-内生树。
https://www.cnblogs.com/Dfkuaid-210/p/14696378.html
方法:
使用拓扑排序,从入度为0的点开始,依此从外层向内层拆点,直到剩下环, 拆换过程中把拆掉的tocnt记到目标点上tocnt,依次累计到环点上。
环点上的所有点的tocnt == 环上点所有tocnt之和。
最后统计所有点的tocnt。

Code
https://atcoder.jp/contests/abc357/submissions/54538162
LL n; /* to[i] -- i means vertex index, to[i] means its next vertex from vertex i. todeg[i] -- i means vertex index, todeg[i] means how many vertice are to this vertex from other vertice. tocnt[i] -- i means vertex index, tocnt[i] means how many vertice can reach to this vertex. */ LL to[200005], todeg[200005], tocnt[200005]; vector<LL> circle; LL dfs(LL i){ if (todeg[i] == 0) return 0; circle.push_back(i); todeg[i] = 0; LL current = tocnt[i]; LL others = dfs(to[i]); LL sum = current + others; return sum; } int main() { cin >> n; /* input and initialize todeg and tocnt */ for(int i=1; i<=n; i++){ cin >> to[i]; todeg[to[i]]++; /* every vertex has one vertex to it at least, which is itself. so tocnt == 1 */ tocnt[i] = 1; } /* do toposort to remove all non-circle vertice, then at last there are some circle left. */ queue<LL> qq; for(int i=1; i<=n; i++){ if (todeg[i]==0){ qq.push(i); } } while(!qq.empty()){ LL front = qq.front(); qq.pop(); tocnt[to[front]] += tocnt[front]; todeg[to[front]]--; if (todeg[to[front]] == 0){ qq.push(to[front]); } } /* for all circle vertice, its tocnt actually contains two parts: (1) tocnt[i] -- from non-circle vertice which can reach i (2) tocnt[j] -- j<>i, other circle vertice in this circle that mean for each circle vertex, tocnt[i] == sum(tocnt[j]|j belong to this circle) */ for(int i=1; i<=n; i++){ if (todeg[i]){ circle.clear(); LL circle_sum = dfs(i); for(auto one: circle){ tocnt[one] = circle_sum; } } } /* count all vertice's tocnt */ LL ans = 0; for(int i=1; i<=n; i++){ ans += tocnt[i]; } cout << ans << endl; return 0; }
出处:http://www.cnblogs.com/lightsong/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

浙公网安备 33010602011771号