第七章 手写数字识别(终)

将前文的代码解耦为三个部分:

  1. 定义的类和函数的nn_core.py
  2. 模型训练和测试集验证并保存最优模型的main_train.py
  3. 验收 (自定义图片预测)的脚本predict.py

至此,手写数字识别的NLP任务完全结束,至于更多的优化目前我不准备做了。
下面是源码:


nn_core.py

# 更新
# 新增:验收图像预处理函数和验收主函数

# 导入必要的库
import numpy as np
import os
import struct
import pickle
import cv2 


# 定义导入函数
def load_images(path):
    with open(path, "rb") as f:
        data = f.read()
    magic_number, num_items, rows, cols = struct.unpack(">iiii", data[:16])
    return np.asanyarray(bytearray(data[16:]), dtype=np.uint8).reshape(
        num_items, 28, 28
    )


def load_labels(path):
    with open(path, "rb") as f:
        data = f.read()
    return np.asanyarray(bytearray(data[8:]), dtype=np.int32)


# 激活函数
# 定义sigmoid函数
def sigmoid(x):
    result = np.zeros_like(x)
    positive_mask = x >= 0
    result[positive_mask] = 1 / (1 + np.exp(-x[positive_mask]))
    negative_mask = x < 0
    exp_x = np.exp(x[negative_mask])
    result[negative_mask] = exp_x / (1 + exp_x)

    return result


# 定义softmax函数
def softmax(x):
    max_x = np.max(x, axis=-1, keepdims=True)
    x = x - max_x

    ex = np.exp(x)
    sum_ex = np.sum(ex, axis=1, keepdims=True)

    result = ex / sum_ex

    result = np.clip(result, 1e-10, 1e10)
    return result


# 训练集编码处理
# 定义独热编码函数
def make_onehot(labels, class_num):
    result = np.zeros((labels.shape[0], class_num))
    for idx, cls in enumerate(labels):
        result[idx, cls] = 1
    return result


# 定义dataset类
class Dataset:
    def __init__(self, all_images, all_labels):
        self.all_images = all_images
        self.all_labels = all_labels

    def __getitem__(self, index):
        image = self.all_images[index]
        label = self.all_labels[index]
        return image, label

    def __len__(self):
        return len(self.all_images)


# 定义dataloader类
class DataLoader:
    def __init__(self, dataset, batch_size, shuffle=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.idx = np.arange(len(self.dataset))

    def __iter__(self):
        # 如果需要打乱,则在每个 epoch 开始时重新排列索引
        if self.shuffle:
            np.random.shuffle(self.idx)
        self.cursor = 0
        return self

    def __next__(self):
        if self.cursor >= len(self.dataset):
            raise StopIteration

        # 使用索引来获取数据
        batch_idx = self.idx[
            self.cursor : min(self.cursor + self.batch_size, len(self.dataset))
        ]

        batch_images = self.dataset.all_images[batch_idx]
        batch_labels = self.dataset.all_labels[batch_idx]

        self.cursor += self.batch_size
        return batch_images, batch_labels


# 父类Module,查看各层结构
# 定义Module类
class Module:
    def __init__(self):
        self.info = "Module:\n"
        self.params = []

    def __repr__(self):
        return self.info


# 定义Parameter类
class Parameter:
    def __init__(self, weight):
        self.weight = weight
        self.grad = np.zeros_like(weight)
        self.velocity = np.zeros_like(weight)  # 🆕 新增:动量/速度向量


# 定义linear类
class Linear(Module):
    def __init__(self, in_features, out_features):
        super().__init__()
        self.info += f"**    Linear({in_features}, {out_features})"

        # 🆕 修正:使用 He 初始化,适用于 ReLU
        std_dev = np.sqrt(2 / in_features)
        # 使用 std_dev 来初始化权重
        self.W = Parameter(
            np.random.normal(0, std_dev, size=(in_features, out_features))
        )
        # 偏置 B 最好初始化为 0,而非随机值
        self.B = Parameter(np.zeros((1, out_features)))

        self.params.append(self.W)
        self.params.append(self.B)

    def forward(self, x):

        self.x = x
        return np.dot(x, self.W.weight) + self.B.weight

    def backward(self, G):
        self.W.grad = np.dot(self.x.T, G)
        self.B.grad = np.mean(G, axis=0, keepdims=True)

        return np.dot(G, self.W.weight.T)


# 定义Conv2D类
class Conv2D(Module):
    def __init__(self, in_channel, out_channel):
        super(Conv2D, self).__init__()
        self.info += f"     Conv2D({in_channel, out_channel})"

        std_dev = np.sqrt(2 / in_channel)
        self.W = Parameter(np.random.normal(0, std_dev, size=(in_channel, out_channel)))
        self.B = Parameter(np.zeros((1, out_channel)))

        self.params.append(self.W)
        self.params.append(self.B)

    def forward(self, x):
        result = x @ self.W.weight + self.B.weight

        self.x = x
        return result

    def backward(self, G):
        self.W.grad = self.x.T @ G
        self.B.grad = np.mean(G, axis=0, keepdims=True)

        delta_x = G @ self.W.weight.T

        return delta_x


# 定义Conv1D类
class Conv1D(Module):
    def __init__(self, in_channel, out_channel):
        super(Conv1D, self).__init__()
        self.info += f"     Conv1D({in_channel,out_channel})"
        self.W = Parameter(np.random.normal(0, 1, size=(in_channel, out_channel)))
        self.B = Parameter(np.zeros((1, out_channel)))

        self.params.append(self.W)
        self.params.append(self.B)

    def forward(self, x):
        result = x @ self.W.weight + self.B.weight

        self.x = x
        return result

    def backward(self, G):
        self.W.grad = self.x.T @ G
        self.B.grad = np.mean(G, axis=0, keepdims=True)

        delta_x = G @ self.W.weight.T

        return delta_x


# 优化器
# 定义Optimizer类
class Optimizer:
    def __init__(self, parameters, lr):
        self.parameters = parameters
        self.lr = lr

    def zero_grad(self):
        for p in self.parameters:
            p.grad.fill(0)


# 定义SGD类,学习率较大
class SGD(Optimizer):

    def step(self):
        for p in self.parameters:
            p.weight -= self.lr * p.grad


# 定义MSGD类,学习率较大
class MSGD(Optimizer):
    def __init__(self, parameters, lr, u):
        super().__init__(parameters, lr)
        self.u = u

    def step(self):
        for p in self.parameters:
            # 1. 更新速度 V_t = u * V_{t-1} + p.grad
            p.velocity = self.u * p.velocity + p.grad

            # 2. 更新权重 W = W - lr * V_t
            p.weight -= self.lr * p.velocity


# 定义Adam类,学习率一般较小10^-3到10^-6
class Adam(Optimizer):

    def __init__(self, parameters, lr, beta1=0.9, beta2=0.999, e=1e-8):
        super().__init__(parameters, lr)
        self.beta1 = beta1
        self.beta2 = beta2
        self.e = e

        self.t = 0

        for p in self.parameters:
            # p.m = 0
            p.m = np.zeros_like(p.weight)
            # p.v = 0
            p.v = np.zeros_like(p.weight)

    def step(self):
        self.t += 1
        for p in self.parameters:
            gt = p.grad
            p.m = self.beta1 * p.m + (1 - self.beta1) * gt
            p.v = self.beta2 * p.v + (1 - self.beta2) * gt**2
            mt_ = p.m / (1 - self.beta1**self.t)
            vt_ = p.v / (1 - self.beta2**self.t)
            p.weight = p.weight - self.lr * mt_ / np.sqrt(vt_ + self.e)


# 定义Sigmoid类
class Sigmoid(Module):
    def __init__(self):
        super().__init__()
        self.info += "**    Sigmoid()"  # 打印信息

    def forward(self, x):
        self.result = sigmoid(x)
        return self.result

    def backward(self, G):
        return G * self.result * (1 - self.result)


# 定义Tanh类
class Tanh(Module):
    def __init__(self):
        super().__init__()
        self.info += "**    Tanh()"  # 打印信息

    def forward(self, x):
        self.result = 2 * sigmoid(2 * x) - 1
        return self.result

    def backward(self, G):
        return G * (1 - self.result**2)


# 定义Softmax类
class Softmax(Module):
    def __init__(self):
        super().__init__()
        self.info += "**    Softmax()"  # 打印信息

    def forward(self, x):
        self.p = softmax(x)
        return self.p

    def backward(self, G):
        G = (self.p - G) / len(G)
        return G


# 定义ReLU类
class ReLU(Module):
    def __init__(self):
        super().__init__()
        self.info += "**    ReLU()"  # 打印信息

    def forward(self, x):
        self.x = x
        return np.maximum(0, x)

    def backward(self, G):
        grad = G.copy()
        grad[self.x <= 0] = 0
        return grad


# 定义Dropout类
class Dropout(Module):
    def __init__(self, p=0.3):
        super().__init__()
        self.info += f"**    Dropout(p={p})"  # 打印信息
        self.p = p
        self.is_training = True  # 🆕 新增:训练状态标志

    def forward(self, x):
        if not self.is_training:
            return x  # 评估时直接返回

        r = np.random.rand(*x.shape)
        self.mask = r >= self.p  # 创建掩码

        # 应用掩码和缩放
        return (x * self.mask) / (1 - self.p)

    def backward(self, G):
        if not self.is_training:
            return G  # 评估时直接返回梯度

        G[~self.mask] = 0
        return G / (1 - self.p)

## 模型
# 定义ModelList类
class ModelList:

    def __init__(self, layers):
        self.layers = layers

    def forward(self, x):
        for layer in self.layers:
            x = layer.forward(x)
        return x

    def backward(self, G):
        for layer in self.layers[::-1]:
            G = layer.backward(G)

    def __repr__(self):
        info = ""
        for layer in self.layers:
            info += layer.info + "\n"
        return info


# 定义Model类
class Model:
    def __init__(self):
        self.model_list = ModelList(
            [
                Linear(784, 512),
                ReLU(),
                Dropout(0.2),
                Conv2D(512, 256),
                Tanh(),
                Dropout(0.1),
                Linear(256, 10),
                Softmax(),
            ]
        )

    def forward(self, x, label=None):
        pre = self.model_list.forward(x)

        if label is not None:
            self.label = label
            loss = -np.mean(self.label * np.log(pre))

            return loss

        else:
            return np.argmax(pre, axis=-1)

    def backward(self):
        self.model_list.backward(self.label)

    def train(self):
        """设置模型为训练模式 (启用 Dropout)。"""
        for layer in self.model_list.layers:
            # 检查层是否有 is_training 属性 (即只针对 Dropout 层)
            if hasattr(layer, "is_training"):
                layer.is_training = True

    def eval(self):
        """设置模型为评估/推理模式 (禁用 Dropout)。"""
        for layer in self.model_list.layers:
            if hasattr(layer, "is_training"):
                layer.is_training = False

    def __repr__(self):
        return self.model_list.__repr__()

    def parameter(self):
        all_Parameter = []
        for layer in self.model_list.layers:
            all_Parameter.extend(layer.params)

        return all_Parameter


# 验收图像预处理函数
def preprocess_custom_image(path, filename):
    """
    加载、预处理单个自定义图片,并提取其标签。

    Args:
        path (str): 图片的完整路径 (root_path + filename)。
        filename (str): 图片文件名 (用于提取标签)。

    Returns:
        tuple: (processed_image_array, label), 或 (None, None)
    """
    try:
        # cv2 读取图片,返回 None 表示读取失败或文件不存在
        img = cv2.imread(path)
        if img is None:
            print(f"警告: 无法读取图片 {path},跳过。")
            return None, None

        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 灰度化
        img_resized = cv2.resize(img_gray, (28, 28))  # 缩放为28*28

        # 归一化并展平为 (1, 784)
        # 注意: cv2.resize 返回的数组已经是 (28, 28)
        processed_image = img_resized.flatten() / 255.0

        # ⚠️ 标签提取逻辑: 根据您实际的文件名格式修改这里的切片逻辑
        # 假设标签在倒数第5个位置 (例如 'image_3.png' 的 '3')
        label = int(filename[-5:-4])

        return processed_image, label

    except ValueError:
        print(
            f"错误: 无法从文件名 '{filename}' 中提取数字标签 (切片结果不是数字),跳过。"
        )
        return None, None
    except Exception as e:
        print(f"处理图片 {filename} 时发生未知错误: {e}")
        return None, None


#  验收主函数
def run_acceptance_test(model_path, image_folder_path):
    """
    加载模型,对指定文件夹中的图片进行预测,并计算准确率。

    Args:
        model_path (str): 已保存的模型文件路径 (e.g., '0.9838.pkl')。
        image_folder_path (str): 存放测试图片的文件夹路径。

    Returns:
        float: 预测准确率 (Accuracy)。
    """
    print("--- 启动模型验收测试 ---")

    # 1. 加载模型
    try:
        with open(model_path, "rb") as f:
            # 确保 Model 类在当前模块或已导入,以避免 AttributeError
            model = pickle.load(f)
        model.eval()  # 切换到评估模式 (如果您的 Model 类有 eval 方法)
        print(f"模型加载成功: {os.path.basename(model_path)}")
    except Exception as e:
        print(f"错误: 模型加载失败,请检查文件路径和 nn_core 导入。错误: {e}")
        return 0.0

    # 2. 准备数据结构
    images_file = os.listdir(image_folder_path)

    # 过滤掉非图片文件
    images_file = [
        f for f in images_file if f.lower().endswith((".png", ".jpg", ".jpeg", ".bmp"))
    ]

    if not images_file:
        print("文件夹中未找到任何图片文件。")
        return 0.0

    # 存储所有有效图片和标签
    processed_images_list = []
    true_labels_list = []

    # 3. 遍历和预处理图片
    for image_name in images_file:
        path = os.path.join(image_folder_path, image_name)

        # 使用分离的预处理函数
        processed_img, label = preprocess_custom_image(path, image_name)

        if processed_img is not None and label is not None:
            processed_images_list.append(processed_img)
            true_labels_list.append(label)

    if not processed_images_list:
        print("没有有效的图片用于测试。")
        return 0.0

    # 4. 预测
    test_images = np.stack(
        processed_images_list
    )  # 将列表中的 (1, 784) 数组堆叠成 (N, 784)
    true_labels = np.array(true_labels_list)

    predicted_labels = model.forward(test_images)

    # 5. 计算准确率
    right_num = np.sum(predicted_labels == true_labels)
    acc = right_num / len(true_labels)

    print("-" * 40)
    print(f"测试图片总数: {len(true_labels)}")
    print(f"正确预测数量: {right_num}")
    print(f"验收准确率: {acc:.4f}")
    print("-" * 40)

    return acc

main_train.py

import numpy as np
import os
import pickle

# 🆕 从自定义模块中导入所有需要的类和函数
from nn_core import (
    load_images,
    load_labels,
    make_onehot,
    Dataset,
    DataLoader,
    Model,
    Adam,
)

# 如果 nn_core 中有其他依赖,也需要导入,或者在 nn_core 中处理好

# 主函数
if __name__ == "__main__":
    # 设置随机种子
    np.random.seed(1000)
    # 加载训练集图片、标签
    train_images = (
        load_images(
            os.path.join(
                "Python", "NLP basic", "data", "minist", "train-images.idx3-ubyte"
            )
        )
        / 255
    )
    train_labels = make_onehot(
        load_labels(
            os.path.join(
                "Python", "NLP basic", "data", "minist", "train-labels.idx1-ubyte"
            )
        ),
        10,
    )

    # 加载测试集图片、标签
    dev_images = (
        load_images(
            os.path.join(
                "Python", "NLP basic", "data", "minist", "t10k-images.idx3-ubyte"
            )
        )
        / 255
    )
    dev_labels = load_labels(
        os.path.join("Python", "NLP basic", "data", "minist", "t10k-labels.idx1-ubyte")
    )

    # 设置超参数
    epochs = 10
    lr = 1e-3
    batch_size = 200
    best_acc = -1

    # 展开图片数据
    train_images = train_images.reshape(60000, 784)
    dev_images = dev_images.reshape(-1, 784)

    # 调用dataset类和dataloader类
    train_dataset = Dataset(train_images, train_labels)
    train_dataloader = DataLoader(train_dataset, batch_size)

    dev_dataset = Dataset(dev_images, dev_labels)
    dev_dataloader = DataLoader(dev_dataset, batch_size)

    # 定义模型
    model = Model()

    # 定义优化器
    # opt = SGD(model.parameter(), lr)
    # opt=MSGD(model.parameter(),lr,0.9)
    opt = Adam(model.parameter(), lr)
    # print(model)

    # 训练集训练过程
    for e in range(epochs):
        # 学习率策略
        START_DECAY_EPOCH = 3  # 从第n个epoch开始衰减
        DECAY_RATE = 0.8  # 衰减率

        if e >= START_DECAY_EPOCH:
            if (
                e - START_DECAY_EPOCH
            ) % 1 == 0 and best_acc < 0.9825:  # 确保是从开始衰减后,每隔n个epoch执行
                # 更新学习率
                lr *= DECAY_RATE
                opt.lr = lr

        # 启用训练模式
        model.train()
        # 训练集训练
        for x, l in train_dataloader:
            loss = model.forward(x, l)
            model.backward()

            opt.step()
            opt.zero_grad()

        # 验证集验证并输出预测准确率
        # 切换到评估模式,禁用 Dropout
        model.eval()

        right_num = 0
        for x, batch_labels in dev_dataloader:

            pre_idx = model.forward(x)

            right_num += np.sum(pre_idx == batch_labels)  # 统计正确个数

        acc = right_num / len(dev_images)  # 计算准确率

        if acc > best_acc and acc > 0.98:
            best_acc = acc
            # 保存最优模型参数
            with open(f"{best_acc:.4f}.pkl", "wb") as f:
                pickle.dump(model, f)

        print(f"Epoch {e}, Acc: {acc:.4f},lr:{lr:.4f}")

predict.py

# 只需要导入您在 nn_core 中定义的函数
from nn_core import run_acceptance_test

if __name__ == "__main__":

    # 路径使用 r'' 避免转义字符错误
    MODEL_PATH = r"D:\my code\0.9838.pkl"
    IMAGE_FOLDER = r"D:\my code\Python\NLP basic\data\test_images"

    # 一行代码完成整个验收过程
    final_accuracy = run_acceptance_test(MODEL_PATH, IMAGE_FOLDER)

    print(f"最终验收结果: {final_accuracy}")

image

posted @ 2025-10-12 13:17  李大嘟嘟  阅读(13)  评论(0)    收藏  举报