Unet
Unet
概述
UNet是遵循FCN的原理,并进行了相应的改进,使其适应小样本的简单分割问题。
网络架构

代码
- 导入依赖
import torch
from torch import nn as nn
import torch.nn.functional as F
- 下采样过程每一层两次卷积
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0),#可能为了保持图像大小不变 我们会修改padding=1
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True), #对变量值可以直接替换,减少内存使用
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=0),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
- 下采样
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2), #最大池化层,下采样
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
- 上采样
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
print(diffX.shape)
print(diffY.shape)
#x1是上采样的数据,x2是进行特征融合的数据
x1 = F.pad(x1, [torch.div(diffX,2,rounding_mode='floor'),diffX - torch.div(diffX,2,rounding_mode='floor')
,torch.div(diffY,2,rounding_mode='floor'), diffY - torch.div(diffY,2,rounding_mode='floor')]) #对较小的feature_map进行填充后才能进行合并
print(x1.shape)
x = torch.cat([x2, x1], dim=1) #在通道维进行合并
return self.conv(x)
- 最后一层的通道数变换
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
- 整体网络架构
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.down4 = Down(512, 1024)
self.up1 = Up(1024, 512, bilinear)
self.up2 = Up(512, 256, bilinear)
self.up3 = Up(256, 128, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
net = self.outc(x)
return net
net = UNet(n_channels=3, n_classes=1)
print(net)
输出:
UNet(
(inc): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
(down1): Down(
(maxpool_conv): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(1): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
)
(down2): Down(
(maxpool_conv): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(1): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
)
(down3): Down(
(maxpool_conv): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(1): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
)
(down4): Down(
(maxpool_conv): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(1): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
)
(up1): Up(
(up): ConvTranspose2d(1024, 512, kernel_size=(2, 2), stride=(2, 2))
(conv): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(1024, 512, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
(up2): Up(
(up): ConvTranspose2d(512, 256, kernel_size=(2, 2), stride=(2, 2))
(conv): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
(up3): Up(
(up): ConvTranspose2d(256, 128, kernel_size=(2, 2), stride=(2, 2))
(conv): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
(up4): Up(
(up): ConvTranspose2d(128, 64, kernel_size=(2, 2), stride=(2, 2))
(conv): DoubleConv(
(double_conv): Sequential(
(0): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
)
)
)
(outc): OutConv(
(conv): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))
)
)

浙公网安备 33010602011771号