python-线程池-进程池
线程池进程池 concurrent.futures
- 什么是池
- 要在程序开始的时候,还没提交任务先创建几个线程或者进程放在一个池子里,这就是池
- 为什么要用池
- 如果先开好进程/线程,那么有任务之后就可以直接使用这个池中的数据了
- 并且开好的线程或者进程会一直存在在池中,可以被多个任务反复利用。这样极大的减少了开启\关闭\调度线程/进程的时间开销
- 池中的线程/进程个数控制了操作系统需要调度的任务个数,控制池中的单位,有利于跳操作系统的效率,减轻操作系统的负担
concurrent.futures模块
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
ThreadPoolExecutor线程池 ProcessPoolExecutor进程池
- 实例化创建池 和 向池中提交任务:submit
- 线程池
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
def func():
print(current_thread().ident)
t_pool = ThreadPoolExecutor(4) # 线程池中线程的数量为4
for i in range(20):
t_pool.submit(func) # submit异步提交任务
import time, random
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from threading import current_thread
def func():
print(current_thread().ident, 'start')
time.sleep(random.randint(1, 4))
print(current_thread().ident, 'end')
t_pool = ThreadPoolExecutor(4) # 线程池中线程的数量为4
for i in range(20):
t_pool.submit(func) # submit异步提交任务
- 传参数(可以位置传参,关键字传参)
import time, random
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from threading import current_thread
def func(name,name2):
print(current_thread().ident, name)
time.sleep(random.randint(1, 4))
print(current_thread().ident, name2)
t_pool = ThreadPoolExecutor(4) # 线程池中线程的数量为4
for i in range(20):
t_pool.submit(func, 'alex', 'taibai') # submit异步提交任务
- 开启进程池(进程池不要忘了加
if __name__ = '__main__':)
import time, random
import os
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
def func(name,name2):
print(os.getpid(), name) # 当前进程pid
time.sleep(random.randint(1, 4))
print(os.getpid(), name2)
if __name__ == '__main__': # 记得加
t_pool = ProcessPoolExecutor(4) # 进程池中进程的数量为4
for i in range(20):
t_pool.submit(func, 'alex', 'taibai') # submit异步提交任务
- 获取任务结果
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time
import os
import random
def func(a, b):
print(os.getpid(), 'start', a, b)
time.sleep(random.randint(1, 4))
print(os.getpid(), 'end')
return a+b
if __name__ == '__main__':
tp = ProcessPoolExecutor(4)
future_l = {}
for i in range(20): # 异步非阻塞的
ret = tp.submit(func, i, i+1)
future_l[i] = ret
# print(ret.result()) # 变成串行了
for key in future_l: # 同步阻塞的
print(key, future_l[key].result())
- map(只适合传递简单的参数,并且必须是一个可迭代的数据类型作为参数)
# 效果和上面获取任务结果一样,只是少了个for循环
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time
import os
import random
def func(a):
b = a+1
print(os.getpid(), 'start', a, b)
time.sleep(random.randint(1, 4))
print(os.getpid(), 'end')
return a+b
if __name__ == '__main__':
tp = ProcessPoolExecutor(4)
ret = tp.map(func, range(20))
for key in ret: # 同步阻塞
print(key)
- 回调函数
ret.add_done_callback(函数)(效率最高)
from concurrent.futures import ThreadPoolExecutor
from threading import current_thread
import time
import random
def func(a, b):
print(current_thread().ident, 'start', a, b)
time.sleep(random.randint(1, 4))
print(current_thread().ident, 'end')
return a+b # 可以做个标识 return (a, a+b)
def print_func(ret): # 异步阻塞
print(ret.result())
if __name__ == '__main__':
tp = ThreadPoolExecutor(4) # 开四个线程
for i in range(20): # 异步非阻塞
ret = tp.submit(func, i, i+1) # 往线程池中提交任务
ret.add_done_callback(print_func) # 回调函数
# ret这个任务再执行完毕的瞬间立即触发print_func函数,并且把任务的返回值对象传递到print_func做参数
# 异步阻塞 回调函数 给ret对象绑定一个回调函数,等待ret对应的任务有了结果之后立即调用print_func这个函数,就可以对结果立即进行处理,而不用按照顺序接收处理结果。。异步阻塞
- shutdown
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time
import os
import random
def func(a, b):
print(os.getpid(), 'start', a, b)
time.sleep(random.randint(1, 4))
print(os.getpid(), 'end')
return a+b
if __name__ == '__main__':
tp = ProcessPoolExecutor(4)
future_l = {}
for i in range(20): # 异步非阻塞的
ret = tp.submit(func, i, i+1)
future_l[i] = ret
tp.shutdown() # 关闭线程池,等待线程池中所有的任务运行完毕
# print(ret.result()) # 变成串行了
for key in future_l: # 同步阻塞的
print(key, future_l[key].result())

浙公网安备 33010602011771号