MySQL 事务基础知识

数据库事务概述

事务是数据库区别于文件系统的重要特性之一,当我们有了事务就会让数据库始终保持一致性,同时我们还能通过事务的机制恢复到某个时间点,这样可以保证已提交到数据库的修改不会因为系统崩溃而丢失。

存储引擎支持情况

SHOW ENGINES 命令来查看当前 MySQL 支持的存储引擎都有哪些,已经这些存储引擎是否支持事务:

mysql> show engines;
+--------------------+---------+----------------------------------------------------------------+-------+------+------------+
| Engine             | Support | Comment                                                 | Transactions | XA   | Savepoints |
+--------------------+---------+---------------------------------------------------------+--------------+------+------------+
| FEDERATED          | NO      | Federated MySQL storage engine                                 | NULL  | NULL | NULL       |
| MEMORY             | YES     | Hash based, stored in memory, useful for temporary tables      | NO    | NO   | NO         |
| InnoDB             | DEFAULT | Supports transactions, row-level locking, and foreign keys     | YES   | YES  | YES        |
| PERFORMANCE_SCHEMA | YES     | Performance Schema                                             | NO    | NO   | NO         |
| MyISAM             | YES     | MyISAM storage engine                                          | NO    | NO   | NO         |
| MRG_MYISAM         | YES     | Collection of identical MyISAM tables                          | NO    | NO   | NO         |
| BLACKHOLE          | YES     | /dev/null storage engine (anything you write to it disappears) | NO    | NO   | NO         |
| CSV                | YES     | CSV storage engine                                             | NO    | NO   | NO         |
| ARCHIVE            | YES     | Archive storage engine                                         | NO    | NO   | NO         |
+--------------------+---------+----------------------------------------------------------------+-------+------+------------+
9 rows in set (0.00 sec)

由上可得在 MySQL 中,只有 InnoDB 是支持事务的。

基本概念

事务:一组逻辑操作单元,使数据从一种状态变换到另外一种状态。

事务处理的原则:保证所有事物都作为一个工作单元来执行,即使出现了故障,都不能改变这种执行方式。当在一个事务中执行多个操作时,要么所有的事务都被提交(commit),那么这些修改就水久地保存下来;要么数据库管理系统将放弃所作的所有修改,整个事务回滚(rollback)到最初状态。

事务的 ACID 特性

原子性(atomicity)

原子性是指事务是一个不可分割的工作单位,要么全部提交,要么全部失败回滚。即要么转账成功,要么转账失败,是不存在中间的状态。如果无法保证原子性会怎么样?就会出现数据不一致的情形,A 账户减去 100 元,而 B 账户增加100元操作失败,系统将无故丢失100元。

一致性(consistency)

根据定义,一致性是指事务执行前后,数据从一个合法性状态变换到另外一个合法性状态。这种状态是语义上的而不是语法上的,跟具体的业务有关。

那什么是合法的数据状态呢?满足预定的约束的状态就叫做合法的状态。通俗一点,这状态是由你自己来定义的(比如满足现实世界中的约束)。满足这个状态,数据就是一致的,不满足这个状态,数据就是不一致的!如果事务中的某个操作失败了,系统就会自动撤销当前正在执行的事务,返回到事务操作之前的状态。

举例1:A账户有 200 元,转账 300 元出去,此时A账户余额为 -100 元。你自然就发现了此时数据是不一致的,为什么呢?因为你定义了一个状态,余额这列必须 >=0。

举例2:A账户 200 元,转账 50 元给B账户,A 账户的钱扣了,但是 B 账户因为各种意外,余额并没有增加。你也知道此时数据是不一致的,为什么呢?因为你定义了一个状态,要求 +B 的总余额必须不变。

举例3:在数据表中我们将姓名字段设置为唯一性约束,这时当事务进行提交或者事务发生回滚的时候,如果数据表中的姓名不唯一,就破坏了事务的一致性要求。

隔离性(isolation)

事务的隔离性是指一个事务的执行不能被其他事务干扰,即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。

如果无法保证隔离性会怎么样?假设账户有200元,B账户0元。A账户往B账户转账两次,每次金额为50元,分别在两个事务中执行。如果无法保证隔离性,会出现下面的情形:

UPDATE accounts SET money = money - 50 WHERE NAME =AA';

UPDATE accounts SET money = money + 50 WHERE NAME ='BB';

image

持久性(durability)

持久性是指一个事务一旦被提交,它对数据库中数据的改变就是永久性的,接下来的其他操作和数据库故障不应该对其有任何影响。

持久性是通过事务日志来保证的。日志包括了重做日志回滚日志。当我们通过事务对数据进行修改的时候,首先会将数据库的变化信息记录到重做日志中,然后再对数据库中对应的行进行修改。这样做的好处是,即使数据库系统崩溃,数据库重启后也能找到没有更新到数据库系统中的重做日志,重新执行,从而使事务具有持久性。

总结

ACID 是事务的四大特性,在这四个特性中,原子性是基础,隔离性是手段,一致性是约束条件,而持久性是我们的目的。

数据库事务,其实就是数据库设计者为了方便起见,把需要保证原子性隔离性一致性持久性的一个或多个数据库操作称为一个事务。

事务的状态

事务是一个抽象的概念,它其实对应着一个或多个数据库操作,MySQL 根据这些操作所执行的不同阶段把事务大致划分成几个状态:

  • 活动的(active)

    事务对应的数据库操作正在执行过程中时,我们就说该事务处在活动的状态。

  • 部分提交的 (partially)

    当事中的最后一个操作执行完成,但由于操作都在内存中执行,所造成的影响并没有刷新到磁盘时,我们就说该事务处在部分提交的状态

  • 失败的(failed)

    当事务处在活动的或者部分提交的状态时,可能遇到了某些错误(数据库自身的错误、操作系统错误或者直接断电等)而无法继续执行,或者人为的停止当前事务的执行,我们就说该事务处在失败的状态。

  • 中止的(aborted)

    如果事务执行了一部分而变为失败的状态,那么就需要把已经修改的事务中的操作还原到事务执行前的状态。换句话说,就是要撤销失败事务对当前数据库造成的影响。我们把这个撤销的过程称之为回滚。当回滚操作执行完毕时,也就是数据库恢复到了执行事务之前的状态,我们就说该事务处在了中止的状态。

  • 提交的(committed)

    当一个处在部分提交的状态的事务将修改过的数据都同步到磁盘上之后,我们就可以说该事务处在了提交的状态。

一个基本的状态转换图如下所示:

image

如何使用事务

使用事务有两种方式,分别为显示事务隐式事务

显示事务

步骤1START TRANSACTION 或者 BEGIN,作用是显示开启一个事务。

mysql> begin;
Query OK, 0 rows affected (0.01 sec)
# 或者
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

START TRANSACTION 语句相较于 BEGIN 特别之处在于,后边能跟随几个 修饰符 :

  1. READ ONLY :标识当前事务是一个 只读事务 ,也就是属于该事务的数据库操作只能读取数据,而不 能修改数据。
  2. READ WRITE :标识当前事务是一个 读写事务 ,也就是属于该事务的数据库操作既可以读取数据, 也可以修改数据。
  3. WITH CONSISTENT SNAPSHOT :启动一致性读。

注意:

  • READ ONLYREAD WRITE 是用来设置所谓的事务 访问模式的,就是以只读还是读写的方式来访问数据库中的数据,一个事务的访问模式不能同时既设置为只读的也设置为读写的,所以不能同时把READ NLY和 READ WRITE 放到 START TRANSACTION语句后边。
  • 如果我们不显式指定事务的访问模式,那么该事务的访问模式就是读写模式。

步骤2:一系列事务中的操作(主要是 DML,不含 DDL);

步骤3:提交事务 或 中止事务(即回滚事务)

# 提交事务。当提交事务后,对数据的修改是永久性的。
mysql> COMMIT;
# 回滚事务。即撤销正在进行的所有没有提交的修改
mysql> ROLLBACK;

#  将事务回滚到某个保存点。
mysql> ROLLBACK TO [SAVEPOINT]

隐式事务

Mysql 中有一个系统变量 autocommit

mysql>SHOW VARIABLES LIKE 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit    | ON    |
+---------------+-------+
1 row in set (0.00 sec)

当然,如果我们想关闭这种 自动提交 的功能,可以使用下边两种方法之一:

  • 显式的的使用 START TRANSACTION 或者 BEGIN 语句开启一个事务。这样在本次事务提交或者回 滚前会暂时关闭掉自动提交的功能。

  • 把系统变量 autocommit 的值设置为 OFF ,就像这样:

    SET autocommit = OFF;
    #或
    SET autocommit = 0;
    

隐式提交数据的情况

  • 数据定义语言(Data definition language,缩写为:DDL)

    数据库对象,指的是数据库视图存储过程 等结构。当我们使用 createDROP 等语句去修改数据库对象时,就会隐式的提交前边语句所属于的事务。

  • 隐式使用或修改mysql数据库中的表

    当我们使用ALTER USERCREATE USERDROP USERGRANTRENAME USERREVOKESET PASSWORD 等语句时也会隐式的提交前边语句所属于的事务。

  • 事务控制或关于锁定的语句

    1. 当我们在一个事务还没提交或者回滚时就又使用 START TRANSACTION 或者 BEGIN 语句开启了 另一个事务时,会 隐式的提交 上一个事务。
    2. 当前的 autocommit 系统变量的值为 OFF,我们手动把它调为 ON 时,也会 隐式的提交前边语句所属的事务。
    3. 使用 LOCK TABLES 、 UNLOCK TABLES 等关于锁定的语句也会 隐式的提交 前边语句所属的事 务。
  • 加载数据的语句

    使用 LOAD DATA语句来批量往数据库中导入数据时,也会隐式的提交前边语句所属的事务。

  • 关于MySQL复制的一些语句

    使用START SLAVESTOP SLAVERESET SLAVECHANGE MASTER TO 等语句时会 隐式的提交 前边语句所属的事务。

  • 其它的一些语句

    使用ANALYZE TABLECACHE INDEXCHECK TABLEFLUSHLOAD INDEX INTO CACHEOPTIMIZE TABLEREPAIR TABLERESET等语句也会隐式的提交前边语句所属的事务。

示例:提交与回滚

首先是 MySQL 默认的状况下,下面这个事务最后的处理结果是什么。

情况1:
mysql> begin;	# 开启一个事务
Query OK, 0 rows affected (0.00 sec)

# 此时不会自动提交数据
mysql> INSERT INTO departments (dept_no,dept_name) value('d010','Technical');
Query OK, 1 row affected (0.06 sec)

mysql> select * from departments where dept_no = 'd010';
+---------+-----------+
| dept_no | dept_name |
+---------+-----------+
| d010    | Technical |
+---------+-----------+
1 row in set (0.00 sec)

mysql> ROLLBACK; # 进行回滚操作后
Query OK, 0 rows affected (0.01 sec)

mysql> select * from departments where dept_no = 'd010'; # 并没有成功添加
Empty set (0.00 sec)
情况2:
mysql> begin;	# 开启一个事务
Query OK, 0 rows affected (0.00 sec)
# 此时不会自动提交数据
mysql> INSERT INTO departments (dept_no,dept_name) value('d010','Technical');
Query OK, 1 row affected (0.06 sec)
mysql> COMMIT; # 提交后数据才会真正保存到磁盘中
Query OK, 0 rows affected (0.03 sec)
mysql> INSERT INTO departments (dept_no,dept_name) value('d011','Thrash'); # 默认情况下(即 autocommit为ture),DML 操作也会自动提交数据
Query OK, 1 row affected (0.01 sec)
mysql> INSERT INTO departments (dept_no,dept_name) value('d011','Thrash');
ERROR 1062 (23000): Duplicate entry 'd011' for key 'departments.PRIMARY'
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from departments;
+---------+--------------------+
| dept_no | dept_name          |
+---------+--------------------+
| d009    | Customer Service   |
| d005    | Development        |
| d002    | Finance            |
| d003    | Human Resources    |
| d001    | Marketing          |
| d004    | Production         |
| d006    | Quality Management |
| d008    | Research           |
| d007    | Sales              |
| d010    | Technical          |
| d011    | Thrash             |
+---------+--------------------+
11 rows in set (0.00 sec)
情况3:
mysql> DELETE FROM departments WHERE dept_no IN ('d010','d011'); # 先删除情况2的测试数据
Query OK, 2 rows affected (0.04 sec)
mysql> SELECT @@completion_type;
+-------------------+
| @@completion_type |
+-------------------+
| NO_CHAIN          |
+-------------------+
1 row in set (0.00 sec)
mysql> SET @@completion_type=1; # 开启一个链式事务
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@completion_type;
+-------------------+
| @@completion_type |
+-------------------+
| CHAIN             |
+-------------------+
1 row in set (0.00 sec)
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql>  INSERT INTO departments (dept_no,dept_name) value('d010','Technical');
Query OK, 1 row affected (0.00 sec)

mysql> COMMIT;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO departments (dept_no,dept_name) value('d011','Thrash');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO departments (dept_no,dept_name) value('d011','Thrash');
ERROR 1062 (23000): Duplicate entry 'd011' for key 'departments.PRIMARY'
mysql> ROLLBACK;
Query OK, 0 rows affected (0.01 sec)

mysql> select * from departments;
+---------+--------------------+
| dept_no | dept_name          |
+---------+--------------------+
| d009    | Customer Service   |
| d005    | Development        |
| d002    | Finance            |
| d003    | Human Resources    |
| d001    | Marketing          |
| d004    | Production         |
| d006    | Quality Management |
| d008    | Research           |
| d007    | Sales              |
| d010    | Technical          |
+---------+--------------------+
10 rows in set (0.00 sec)

情况 2 和情况 3 是相同的代码,只是在事务开始之前设置了 SET @@completion_type=1; 结果就和我们第一次处理的一样,只有一个 Technical 。

completion_type 详解
  1. completion = 0,这是默认情况。当我们执行 COMMIT 的时候会提交事务,在执行下一个事务时,还需要使用 START TRANSACTION 或者 BEGIN 来开启。
  2. completion = 1,这种情况下,当我们提交事务后,相当于执行了 COMMIT AND CHAIN ,也就是开启一个链式事务,即当我们提交事务之后会开启一个相同隔离级别的事务。
  3. completion = 2,这种情况下 COMMIT =COMMIT AND RELEASE,也就是当我们提交后,会自动与服务器断开连接。

当我们设置 autocommit=0 时,不论是否采用 START TRANSACTION 或者 BEGIN 的方式来开启事务,都需要用 COMMIT 进行提交,让事务生效,使用ROLLBACK 对事务进行回滚。

当我们设置 autocommit=1 时,每条 SQL 语句都会自动进行提交。不过这时,如果你采用START TRANSACTION或者BEGIN的方式来显式地开启事务,那么这个事务只有在 COMMIT 时才会生效,在 ROLLBACK 时才会回滚。

事务隔离级别

MySQL是一个 客户端/服务器 架构的软件,对于同一个服务器来说,可以有若干个客户端与之连接,每个客户端与服务器连接上之后,就可以称为一个会话(Session) 。每个客户端都可以在自己的会话中向服务器发出请求语句,一个请求语句可能是某个事务的一部分,也就是对于服务器来说可能同时处理多个事务。事务有隔离性的特性,理论上在某个事务 对某个数据进行访问 时,其他事务应该进行 排队,当该事务提交之后,其他事务才可以继续访问这个数据。但是这样对性能影响太大,我们既想保持事务的隔离性,又想让服务器在处理访问同一数据的多个事务时 性能尽量高些,那就看二者如何权衡取舍了。

数据并发问题

脏写(Dirty Write)

对于两个事务 Session A,Session B,如果事务 Session A 修改了另一个 未提交 事务 Session B 修改过的数据,那就意味着发生了 脏写,示意图如下:

image

Session A和Session B各开启了一个事务,Session B中的事务先将 studentno 列为 1 的记录的 name 列更新为 '李四',然后 Session A 中的事务接着又把这条 studentno 列为 1 的记录的 name 列更新为 '张三'。如果之后 Session B 中的事务进行了回滚,那么 Session A 中的更新也将不复存在,这种现象就称之为脏写。这时 Session A 中的事务就没有效果了,明明把数据更新了,最后也提交事务了,最后看到的数据什么变化也没有。这里大家对事务的隔离级比较了解的话,会发现默认隔离级别下,上面SessionA中的更新语句会处于等待状态,这里只是跟大家说明一下会出现这样现象。

脏读(Dirty Read)

对于两个事务 Session A、Session B,Session A 读取了已经被 Session B 更新但还没有被提交的字段。之后若 Session B 回滚 ,Session A 读收 的内容就是 临时且无效 的。

image

Session A 和 Session B 各开启了一个事务,Session B 中的事务先将 studentno 列为 1 的记录的 name 列更新为'张三',然后 Session A 中的事务再去查询这条 studentno 为 1 的记录,如果读到列 name 的值为'张三',而 Session B 中的事务稍后进行了回滚,那么 Session A 中的事务相当于读到了一个不存在的数据,这种现象就称之为脏读

不可重复读(Non-Repeatable Read)

对于两个事务Session A、Session B,Session A 读收 了一个字段,然后Session B 更新 了该字段。之后Session A 再次读收 同一个字段,值就不同 了。那就意味着发生了不可重复读。

image

我们在 Session B 中提交了几个隐式事务(注意是隐式事务,意味着语句结束事务就提交了),这些事务都修改了studentno列为1的记录的列name的值,每次事务提交之后,如果Session A中的事务都可以查看到最新的值,这种现象也被称之为不可重复读

幻读(Phantom)

对于两个事务 Session A、Session B,Session A 从一个表中 读取 了一个字段,然后 Session B 在该表中 插入 了一些新的行。之后,如果 Session A 再次读取 同一个表,就会多出几行。那就意味着发生了幻读。

image

Session A 中的事务先根据条件 studentno>0 这个条件查询表 student,得到了 name 列值为'张三'的记录;之后 Session B 中提交了一个隐式事务,该事务向表 student 中插入了一条新记录;之后 Session A 中的事务再根据相同的条件 studentno>0 查询表 student,得到的结果集中包含 Session B 中的事务新插入的那条记录,这种现象也被称之为幻读。我们把新插入的那些记录称之为幻影记录。

SQL 中的四种隔离级别

问题严重程度排序:脏写 > 脏读 > 不可重复读 > 幻读

舍弃一部分隔离性来换取一部分性能在这里就体现在:设立一些隔离级别,隔离级别越低,并发问题发生就越多。SQL 标准中设立了 4 个隔离级别

  • READ UNCOMMITTED:读未提交,在该隔离级别,所有事务都可以看到其他未提交事务的执行结果,不能避免脏读、不可重复读、幻读。
  • READ COMMITTED:读已提交,它满足了隔离的简单定义:一个事务只能看见已经提交事务所故的改变。这是大多数数据库系统的默认隔离级别(但不是MySQL默认的)。可以避免脏读,但不可重复读、幻读问题仍然存在。
  • REPEATABLE READ:可重复读,事务A 在读到一条数据之后,此时事务B对该数据进行了修改并提交,那么事务 A 再读该数据,读到的还是原来的内容。可以避免脏读、不可重复读,但幻读问题仍然存在。这是MySQL的默认隔离级别。
  • SERIALIZABLE:可串行化,确保事务可以从一个表中读取相同的行。在这个事务持续期间,禁止其他事务对该表执行插入。更新和删除操作。所有的并发问题都可以避免,但性能十分低下。能避免脏读、不可重复读和幻读。

具体情况如下:

隔离级别 脏读可能性 不可重复读可能性 幻读可能性 加锁读
READ UNCOMMITTED Yes Yes Yes No
READ COMMITTED NO Yes Yes No
REPEATABLE READ No No Yes No
SERIALIZABLE No No No Yes

MySQL 支持的四种隔离级别

MySQL 的默认隔离级别为 REPEATABLE READ,可以手动修改一下事务的隔离级别。

查看隔离级别

MySQL 5.7.20 的版本之前
SHOW VARIABLES LIKE 'tx_isolation';

MySQL 5.7.20 版本之后,引入 transaction_isolation 来替换 tx_isolation;

MySQL 5.7.20 的版本及以后
mysql> SHOW VARIABLES LIKE 'transaction_isolation';
+-----------------------+-----------------+
| Variable_name         | Value           |
+-----------------------+-----------------+
| transaction_isolation | REPEATABLE-READ |
+-----------------------+-----------------+
1 row in set (0.09 sec)
全版本通用的方式
mysql> SELECT @@transaction_isolation;
+-------------------------+
| @@transaction_isolation |
+-------------------------+
| REPEATABLE-READ         |
+-------------------------+
1 row in set (0.00 sec)

设置隔离级别

SET [GLOBAL|SESSION] TRANSACTION ISOLATION LEVEL '隔离级别';

或者:

SET [ GLOBAL | SESSION ] TRANSACTION_ISOLATION = '隔离级别';

隔离级别可选:

> READ UNCOMMITTED

> READ COMMITTED

> REPEATABLE READ

> SERIALIZABLE

关于设置时使用 GLOBAL 或 SESSION 的影响:
  • 使用 GLOBAL 关键字(在全局范围影响):
    • 当前已经存在的会话无效;
    • 只对执行完语句之后产生的会话起作用。
  • 使用 SESSION 关键字(在会话范围影响):
    • 对当前会话的所有后续的事务有效;
    • 如果在事物之间执行,则对后续的事务有效;
    • 该语句可以在已经开启的事务中执行,但不会影响当前正在执行的事务。

事务常见分类

从事务理论的解读来看,可以把事务分为以下几种类型;

  • 扁平事务(Flat Transactions)
  • 带有保存点的扁平事务(Flag transactions with Savepoints)
  • 链事务(Chained Transactions)
  • 嵌套事务(Nested Transactions)
  • 分布式事务(Distributed Transactions)

扁平事务

扁平事务 是事务类型中最简单的一种,但是在实际生产环境中,这可能是使用最频繁的事务,在扁平事务中,所有操作都处于同一层次,其由 BEGIN WORK 开始,由 COMMIT WORK 或 ROLLBACK WORK 结束,其间的操作是原子的,要么都执行,要么都回滚,因此,扁平事务是应用程序成为原子操作的基本组成模块。也正因为其简单,使用频繁,故每个数据库系统都实现了对扁平事务的支持。扁平事务的主要限制是不能提交或者回滚事务的某一部分,或分几个步骤提交。

扁平事务一般有三种不同的结果:

  1. 事务成功完成,在平常应用中约占所有事务的 96%。
  2. 应用程序要求停止事务。比如应用程序在捕获到异常时会回滚事务,约占事务的 3%。
  3. 外界因素强制终止事务。如连接超时或连接中断,约占所有事务的 1%。

带有保存点的扁平事务

带有保存点的扁平事务 除了支持扁平事务支持的操作外,还允许在事务执行过程中回滚到同一事务中较早的一个状态。这是因为某些事务可能在执行过程中出现的错误并不会导致所有的操作都无效,放弃整个事务不合乎要求,开销太大。

保存点(Savepoint) 用来通知事务系统应该记住事务当前的状态,以便当之后发生错误时,事务能回到保存点当时的状态。对于扁平的事务来说,隐式的设置了一个保存点,然而在整个事务中,只有这一个保存点,因此,回滚只能会滚到事务开始时的状态。

链事务

链事务 是指一个事务由多个子事务链式组成,它可以被视为保存点模式的一个变种。带有保存点的扁平事务,当发生系统崩溃时,所有的保存点都将消失,这意味着当进行恢复时,事务需要从开始处重新执行,而不能从最近的一个保存点继续执行。

链事务的思想是:在提交一个事务时,释放不需要的数据对象,将必要的处理上下文隐式地传给下一个要开始的事务,前一个子事务的提交操作和下一个子事务的开始操作合并成一个原子操作,这意味着下一个事务将看到上一个事务的结果,就好像在一个事务中进行一样。这样,在提交子事务时就可以释放不需要的数据对象,而不必等到整个事务完成后才释放。其工作方式如下:

链事务与带有保存点的扁平事务的不同之处体现在:

  1. 带有保存点的扁平事务能回滚到任意正确的保存点,而链事务中的回滚仅限于当前事务,即只能恢复到最近的一个保存点。
  2. 对于锁的处理,两者也不相同,链事务在执行C0MMT后即释放了当前所特有的锁,而带有保存点的扁平事务不影响迄今为止所持有的锁。

嵌套事务

嵌套事务是一个层次结构框架,由一个顶层事务(Top-Level Transaction)控制着各个层次的事务,顶层事务之下嵌套的事务被称为子事务(Subtransaction),其控制着每一个局部的变换,子事务本身也可以是嵌套事务。因此,嵌套事务的层次结构可以看成是一棵树。

分布式事务

分布式事务通常是在个分布式环境下运行的扁平事务,因此,需要根据数据所在位置访问网络中不同节点的数据库资源。例如,一个银行用户从招商银行的账户向工商银行的账户转账1000元,这里需要用到分布式事务,因为不能仅调用某一家银行的数据库就完成任务。

引用

  • 基于宋红康老师的MySQL教学视频;
posted @ 2022-09-30 22:43  李小龙他哥  阅读(71)  评论(0编辑  收藏  举报