大数据之map

1.编写map函数,reduce函数

 

cd /home/hadoop
mkdir wc
cd /home/hadoop/wc
touch mapper.py
1
touch reducer.py
编写两个函数

  mapper.py:

import sys
for line in sys.stdin:
line = line.strip()
words = line.split()
for word in words:
print ('%s\t%s' % (word,1))

 

 

  reducer.py:

#!/usr/bin/env python
from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

for line in sys.stdin:
line = line.strip()
word, count = line.split('\t', 1)
try:
count = int(count)
except ValueError:
continue

if current_word == word:
current_count += count
else:
if current_word:
print
'%s\t%s' % (current_word, current_count)
current_count = count
current_word = word
if current_word == word:
print
'%s\t%s' % (current_word, current_count)

2.将其权限作出相应修改

chmod a+x /home/hadoop/wc/mapper.py
chmod a+x /home/hadoop/wc/reducer.py

3.本机上测试运行代码

echo
"foo foo quux labs foo bar quux" | / home / hadoop / wc / mapper.py

echo
"foo foo quux labs foo bar quux" | / home / hadoop / wc / mapper.py | sort - k1, 1 | / home / hadoop / wc / reducer.py

  

 

4.放到HDFS上运行

  下载文本文件或爬取网页内容存成的文本文件:

cd  /home/hadoop/wc
wget http://www.gutenberg.org/files/5000/5000-8.txt
wget http://www.gutenberg.org/cache/epub/20417/pg20417.txt

5.下载并上传文件到hdfs上

hdfs
dfs - put / home / hadoop / hadoop / gutenberg / *.txt / user / hadoop / input

 

 

6.用Hadoop Streaming命令提交任务

   寻找你的streaming的jar文件存放地址:

cd /usr/local/hadoop/share/hadoop/tools/lib/hadoop-streaming-2.7.1.jar

  打开环境变量配置文件

gedit ~/.bashrc

  在里面写入streaming路径

export STREAM=$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar

 让环境变量生效:

source ~/.bashrc
echo $STREAM

 建立一个shell名称为run.sh来运行:

gedit run.sh
hadoop jar $STREAM
-file / home / hadoop / wc / mapper.py \
- mapper / home / hadoop / wc / mapper.py \
- file / home / hadoop / wc / reducer.py \
- reducer / home / hadoop / wc / reducer.py \
- input / user / hadoop / input / *.txt \
- output / user / hadoop / wcoutput
source run.sh
posted @ 2021-11-30 20:12  kyming  阅读(36)  评论(0)    收藏  举报