338. Counting Bits
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
 - Space complexity should be O(n).
 
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
 
Hint:
- You should make use of what you have produced already。
 
因为最近在研究树状数组,被他的精妙所震撼。他巧妙的将一个数的二进制0与1的个数赋予新的含义。
int LowBit(int x)
	{
		return x & (-x);
	}树状数组学习笔记:
看到了这个题,很自然的联想到LowBit的使用。
思路:记忆化搜索+LowBit
对于LowBit(x):
假设x的末尾0的个数为k则LowBit是计算2^k,同时也是计算末尾1在的位置(即所表示的数)
| i | bit | 2^k | 
| 1 | 01 | 1 | 
| 2 | 10 | 2 | 
| 3 | 11 | 1 | 
| 4 | 100 | 4 | 
| 5 | 101 | 1 | 
| 6 | 110 | 2 | 
| 7 | 111 | 1 | 
| 8 | 1000 | 8 | 
| 9 | 1001 | 1 | 
| 10 | 1010 | 2 | 
| 11 | 1011 | 1 | 
| 12 | 1100 | 4 | 
| 13 | 1101 | 1 | 
| 14 | 1110 | 2 | 
| 15 | 1111 | 1 | 
| 16 | 10000 | 16 | 
当i与2^k相等时,意味着只有一个1,输出1
当i与2^k不相等时,比如我们看i=15,此时2^k=1,即末尾的1代表1,我们把末尾的1“去掉”,1111-->1110
即转化为求14的二进制数1的个数(当然得加上删除的1),也就是我们得利用先前求得的来计算i的二进制数1的个数。
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
	int LowBit(int x)
	{
		return x & (-x);
	}
    vector<int> countBits(int num) {
        vector<int>vec;
        vec.push_back(0);
        for (int i = 1; i <= num; ++i)
        {
        	if (i == LowBit(i))
        	{
        		vec.push_back(1);
        	}
        	else
        	{
        		vec.push_back(vec[i - LowBit(i)] + 1);
        	}
        }
        return vec;
    }
};
int main()
{
	Solution s;
	vector<int>vec = s.countBits(16);
	for (auto iter = vec.begin(); iter != vec.end(); iter++)
	{
		cout << *iter << endl;
	}
    return 0;
}63ms
Keep it simple!
                    
                
                
            
        
浙公网安备 33010602011771号