模板
树链剖分
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010, M = N * 2;
int n, m;
int w[N], h[N], e[M], ne[M], idx;
int id[N], nw[N], cnt;
int dep[N], sz[N], top[N], fa[N], son[N];
struct Tree {
int l, r;
LL add, sum;
} tr[N * 4];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void dfs1(int u, int father, int depth) {
dep[u] = depth, fa[u] = father, sz[u] = 1;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (j == father) continue;
dfs1(j, u, depth + 1);
sz[u] += sz[j];
if (sz[son[u]] < sz[j]) son[u] = j;
}
}
void dfs2(int u, int t) { //cnt统计遍历到的点的编号,top[u]表示节点u所在重链的最上方的节点
id[u] = ++cnt, nw[cnt] = w[u], top[u] = t;
if (!son[u]) return;
dfs2(son[u], t);
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (j == fa[u] || j == son[u]) continue;
dfs2(j, j);
}
}
void pushup(int u) {
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void pushdown(int u) {
auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if (root.add) {
left.add += root.add, left.sum += root.add * (left.r - left.l + 1);
right.add += root.add, right.sum += root.add * (right.r - right.l + 1);
root.add = 0;
}
}
void build(int u, int l, int r) {
tr[u] = {l, r, 0, nw[r]};
if (l == r) return;
int mid = (l + r) >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void update(int u, int l, int r, int k) {
if (l <= tr[u].l && r >= tr[u].r ) {
tr[u].add += k;
tr[u].sum += k * (tr[u].r - tr[u].l + 1);
return;
}
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if (l <= mid) update(u << 1, l, r, k);
if (r > mid) update(u << 1 | 1, l, r, k);
pushup(u);
}
LL query(int u, int l, int r) {
if (l <= tr[u].l && r >= tr[u].r) return tr[u].sum;
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
LL res = 0;
if (l <= mid) res += query(u << 1, l, r);
if (r > mid) res += query(u << 1 | 1, l, r);
return res;
}
void update_path(int u, int v, int k) {
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
update(1, id[top[u]], id[u], k);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
update(1, id[v], id[u], k);
}
LL query_path(int u, int v) {
LL res = 0;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res += query(1, id[top[u]], id[u]);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
res += query(1, id[v], id[u]);
return res;
}
void update_tree(int u, int k) {
update(1, id[u], id[u] + sz[u] - 1, k);
}
LL query_tree(int u) {
return query(1, id[u], id[u] + sz[u] - 1);
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
memset(h, -1, sizeof(h));
for (int i = 0; i < n - 1; i++) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs1(1, -1, 1);
dfs2(1, 1);
build(1, 1, n);
scanf("%d", &m);
while (m--) {
int t, u, v, k;
scanf("%d%d", &t, &u);
if (t == 1) {
scanf("%d%d", &v, &k);
update_path(u, v, k);
}
else if (t == 2) {
scanf("%d", &k);
update_tree(u, k);
}
else if (t == 3) {
scanf("%d", &v);
printf("%lld\n", query_path(u, v));
}
else printf("%lld\n", query_tree(u));
}
return 0;
}
最大流
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 110, M = 10010;
const LL INF = 1e18;
int n, m, S, T;
int h[N], e[M], ne[M], idx;
LL f[M];
int q[N], d[N], cur[N];
void add(int a, int b, LL c) {
e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
bool bfs() {
int hh = 0, tt = 0;
memset(d, -1, sizeof(int) * (n + 1));
q[0] = S, d[S] = 0, cur[S] = h[S];
while (hh <= tt) {
int t = q[hh++];
for (register int i = h[t]; i != -1; i = ne[i]) {
int ver = e[i];
if (d[ver] == -1 && f[i]) {
d[ver] = d[t] + 1;
cur[ver] = h[ver];
if (ver == T) return true;
q[++tt] = ver;
}
}
}
return false;
}
LL find(int u, LL limit) {
if (u == T) return limit;
LL flow = 0;
for (register int i = cur[u]; i != -1 && flow < limit; i = ne[i]) {
cur[u] = i;
int ver = e[i];
if (d[ver] == d[u] + 1 && f[i]) {
int t = find(ver, min(f[i], limit - flow));
f[i] -= t, f[i^1] += t, flow += t;
}
}
return flow;
}
LL dinic() {
LL r = 0, flow;
while (bfs()) {
while (flow = find(S, INF)) r += flow;
}
return r;
}
int main() {
scanf("%d%d%d%d", &n, &m, &S, &T);
memset(h, -1, sizeof(int) * (n + 1));
while (m--) {
int a, b, c;
scanf("%d%d%lld", &a, &b, &c);
add(a, b, c), add(b, a, 0);
}
printf("%lld\n", dinic());
return 0;
}
tips:1.网络流建图时建反图
2.bfs时计算cur数组

浙公网安备 33010602011771号