1 import requests
2 import time
3 from bs4 import BeautifulSoup
4
5 #设置列表页URL的固定部分
6 url='http://bj.lianjia.com/ershoufang/'
7 #设置页面页的可变部分
8 page=('pg')
9
10 #设置请求头部信息
11 headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
12 'Accept':'text/html;q=0.9,*/*;q=0.8',
13 'Accept-Charset':'ISO-8859-1,utf-8;q=0.7,*;q=0.3',
14 'Accept-Encoding':'gzip',
15 'Connection':'close',
16 'Referer':'http://www.baidu.com/link?url=_andhfsjjjKRgEWkj7i9cFmYYGsisrnm2A-TN3XZDQXxvGsM9k9ZZSnikW2Yds4s&wd=&eqid=c3435a7d00006bd600000003582bfd1f'
17 }
18
19 #循环抓取列表页信息
20 for i in range(1,10):
21 if i == 1:
22 i=str(i)
23 a=(url+page+i+'/')
24 r=requests.get(url=a,headers=headers)
25 html=r.content
26 else:
27 i=str(i)
28 a=(url+page+i+'/')
29 r=requests.get(url=a,headers=headers)
30 html2=r.content
31 html = html + html2
32 #每次间隔0.5秒
33 time.sleep(0.5)
34
35 #解析抓取的页面内容
36 lj=BeautifulSoup(html,'html.parser')
37
38 #提取房源总价
39 price=lj.find_all('div',attrs={'class':'priceInfo'})
40 tp=[]
41 for a in price:
42 totalPrice=a.span.string
43 tp.append(totalPrice)
44
45 #提取房源信息
46 houseInfo=lj.find_all('div',attrs={'class':'houseInfo'})
47 hi=[]
48 for b in houseInfo:
49 house=b.get_text()
50 hi.append(house)
51
52 #提取房源关注度
53 followInfo=lj.find_all('div',attrs={'class':'followInfo'})
54 fi=[]
55 for c in followInfo:
56 follow=c.get_text()
57 fi.append(follow)
58
59 #导入pandas库
60 import pandas as pd
61 #创建数据表
62 house=pd.DataFrame({'totalprice':tp,'houseinfo':hi,'followinfo':fi})
63 #查看数据表的内容
64 house.head()
65
66 #对房源信息进行分列
67 houseinfo_split = pd.DataFrame((x.split('|') for x in house.houseinfo),index=house.index,columns=['xiaoqu','huxing','mianji','chaoxiang','zhuangxiu','dianti'])
68
69 #查看分列结果
70 houseinfo_split.head()
71
72 #将分列结果拼接回原数据表
73 house=pd.merge(house,houseinfo_split,right_index=True, left_index=True)
74 #完成拼接后的数据表中既包含了原有字段,也包含了分列后的新增字段。
75 #查看拼接后的数据表
76 house.head()
77
78 #对房源关注度进行分列
79 followinfo_split = pd.DataFrame((x.split('/') for x in house.followinfo),index=house.index,columns=['guanzhu','daikan','fabu'])
80 #将分列后的关注度信息拼接回原数据表
81 house=pd.merge(house,followinfo_split,right_index=True, left_index=True)
82
83 #按房源户型类别进行汇总
84 huxing=house.groupby('huxing')['huxing'].agg(len)
85 #查看户型汇总结果
86 huxing
87
88 #导入图表库
89 import matplotlib.pyplot as plt
90 #导入数值计算库
91 import numpy as np
92
93 #用len函数计算出huxing的长度
94 l = len(huxing)
95 # 定义一个hx空数组
96 hx=[]
97 for i in range(1,len(huxing)+1):
98
99 hx.append(i)
100
101 #绘制房源户型分布条形图
102 plt.rc('font', family='STXihei', size=11)
103 a=np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
104 plt.barh(hx,huxing,color='#052B6C',alpha=0.8,align='center',edgecolor='white')
105 plt.ylabel('户型')
106 plt.xlabel('数量')
107 plt.xlim(0,1300)
108 plt.ylim(0,20)
109 plt.title('房源户型分布情况')
110 plt.legend(['数量'], loc='upper right')
111 plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.4)
112 plt.yticks(a,('1室0厅','1室1厅','1室2厅','2室0厅','2室1厅','2室2厅','3室0厅','3室1厅','3室2厅','3室3厅','4室1厅','4室2厅','4室3厅','5室2厅','5室3厅','6室1厅','6室2厅','7室2厅','7室3厅'))
113 plt.show()
114
115 #对房源面积进行二次分列
116 mianji_num_split = pd.DataFrame((x.split('平') for x in house.mianji),index=house.index,columns=['mianji_num','mi'])
117 #将分列后的房源面积拼接回原数据表
118 house=pd.merge(house,mianji_num_split,right_index=True, left_index=True)
119
120 #去除mianji_num字段两端的空格
121 #house['mianji_num']=house['mianji_num'].map(str.strip)
122
123 #更改mianji_num字段格式为float
124 house['mianji_num']=house['mianji_num'].astype(float)
125
126 #查看所有房源面积的范围值
127 house['mianji_num'].min(),house['mianji_num'].max()
128 (18.850000000000001, 332.63)
129
130
131 #对房源面积进行分组
132 bins = [0, 50, 100, 150, 200, 250, 300, 350]
133 group_mianji = ['小于50', '50-100', '100-150', '150-200','200-250','250-300','300-350']
134 house['group_mianji'] = pd.cut(house['mianji_num'], bins, labels=group_mianji)
135
136 #按房源面积分组对房源数量进行汇总
137 group_mianji=house.groupby('group_mianji')['group_mianji'].agg(len)
138
139 #绘制房源面积分布图
140 plt.rc('font', family='STXihei', size=15)
141 a=np.array([1,2,3,4,5,6,7])
142 plt.barh([1,2,3,4,5,6,7],group_mianji,color='#052B6C',alpha=0.8,align='center',edgecolor='white')
143 plt.ylabel('面积分组')
144 plt.xlabel('数量')
145 plt.title('房源面积分布')
146 plt.legend(['数量'], loc='upper right')
147 plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.4)
148 plt.yticks(a,('小于50', '50-100', '100-150', '150-200','200-250','250-300','300-350'))
149 plt.show()
150
151 #对房源关注度进行二次分列
152 guanzhu_num_split = pd.DataFrame((x.split('人') for x in house.guanzhu),index=house.index,columns=['guanzhu_num','ren'])
153 #将分列后的关注度数据拼接回原数据表
154 house=pd.merge(house,guanzhu_num_split,right_index=True, left_index=True)
155 #去除房源关注度字段两端的空格
156 house['guanzhu_num']=house['guanzhu_num'].map(str.strip)
157 #更改房源关注度及总价字段的格式
158 house[['guanzhu_num','totalprice']]=house[['guanzhu_num','totalprice']].astype(float)
159
160 #查看房源关注度的区间
161 house['guanzhu_num'].min(),house['guanzhu_num'].max()
162 (0.0, 725.0)
163
164 #对房源关注度进行分组
165 bins = [0, 100, 200, 300, 400, 500, 600, 700,800]
166 group_guanzhu = ['小于100', '100-200', '200-300', '300-400','400-500','500-600','600-700','700-800']
167 house['group_guanzhu'] = pd.cut(house['guanzhu_num'], bins, labels=group_guanzhu)
168 group_guanzhu=house.groupby('group_guanzhu')['group_guanzhu'].agg(len)
169
170 #绘制房源关注度分布图
171 plt.rc('font', family='STXihei', size=15)
172 a=np.array([1,2,3,4,5,6,7,8])
173 plt.barh([1,2,3,4,5,6,7,8],group_guanzhu,color='#052B6C',alpha=0.8,align='center',edgecolor='white')
174 plt.ylabel('关注度分组')
175 plt.xlabel('数量')
176 plt.xlim(0,3000)
177 plt.title('房源关注度分布')
178 plt.legend(['数量'], loc='upper right')
179 plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.4)
180 plt.yticks(a,('小于100', '100-200', '200-300', '300-400','400-500','500-600','600-700','700-800'))
181 plt.show()
182
183 #导入sklearn中的KMeans进行聚类分析
184 from sklearn.cluster import KMeans
185 #使用房源总价,面积和关注度三个字段进行聚类
186 house_type = np.array(house[['totalprice','mianji_num','guanzhu_num']])
187 #设置质心数量为3
188 clf=KMeans(n_clusters=3)
189 #计算聚类结果
190 clf=clf.fit(house_type)
191
192 #查看分类结果的中心坐标
193 clf.cluster_centers_array([[ 772.97477064, 112.02389908, 58.96330275],[ 434.51073861, 84.92950236, 61.20115244],[ 1473.26719577, 170.65402116, 43.32275132]])
194
195 #在原数据表中标注所属类别
196 house['label']= clf.labels_