caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--03--20171103
classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/8.jpg sea@sea-X550JK:~/caffe$ classification --help Usage: classification deploy.prototxt network.caffemodel mean.binaryproto labels.txt img.jpg classification models/bvlc_reference_caffenet/deploy.prototxt models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel models/bvlc_reference_caffenet/mean.binaryproto models/bvlc_reference_caffenet/labels.txt ~/Downloads/images/horse/8.jpg
用cifar10训练的结果进行分类:
python python/classify.py --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 --center_only examples/images/cat.jpg foo
python python/classify.py --model_def models/bvlc_reference_caffenet/deploy.prototxt --pretrained_model models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel --center_only examples/images/cat.jpg foo
I1103 16:59:58.189568 25346 net.cpp:200] conv1 does not need backward computation. I1103 16:59:58.189571 25346 net.cpp:200] data does not need backward computation. I1103 16:59:58.189574 25346 net.cpp:242] This network produces output prob I1103 16:59:58.189584 25346 net.cpp:255] Network initialization done. I1103 16:59:58.303480 25346 upgrade_proto.cpp:44] Attempting to upgrade input file specified using deprecated transformation parameters: models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel I1103 16:59:58.303509 25346 upgrade_proto.cpp:47] Successfully upgraded file specified using deprecated data transformation parameters. W1103 16:59:58.303514 25346 upgrade_proto.cpp:49] Note that future Caffe releases will only support transform_param messages for transformation fields. I1103 16:59:58.303517 25346 upgrade_proto.cpp:53] Attempting to upgrade input file specified using deprecated V1LayerParameter: models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel I1103 16:59:58.504439 25346 upgrade_proto.cpp:61] Successfully upgraded file specified using deprecated V1LayerParameter I1103 16:59:58.559579 25346 net.cpp:744] Ignoring source layer loss /usr/local/lib/python2.7/dist-packages/skimage/transform/_warps.py:84: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15. warn("The default mode, 'constant', will be changed to 'reflect' in " Loading file: examples/images/cat.jpg Classifying 1 inputs. Done in 1.20 s. Predictions : [[ 7.96905475e-09 2.68402800e-05 4.61699550e-08 5.81401345e-08 3.00355154e-08 1.08543240e-07 7.21305184e-08 6.65618529e-07 4.10124194e-05 8.26508540e-07 2.64434061e-06 4.29981719e-06 2.29038033e-05 9.16178294e-07 2.02221463e-06 1.91530648e-06 8.36403979e-06 5.25011237e-05 1.32120860e-07 7.34086640e-08 7.26202700e-07 6.55063502e-07 2.83661024e-07 8.35531750e-08 1.45248293e-07 3.21299929e-08 5.94506417e-08 1.11880944e-07 2.61020752e-08 1.33058847e-05 2.00340565e-07 7.72992621e-08 2.47393245e-07 5.60683127e-08 7.26820346e-08 2.93914972e-08 8.09441403e-08 1.17543671e-07 1.24727379e-07 1.14408145e-07
sea@sea-X550JK:~/caffe$ python readFromFooAndShow.py sz = 4112 nl.shape = (1, 1000) ssdict = [(281, 0.30427486), (285, 0.1783575), (282, 0.16652611), (287, 0.15713461), (278, 0.042343788), (277, 0.039970074),
(283, 0.011617188), (876, 0.0085467361), (284, 0.0076080137), (463, 0.0066294265), (904, 0.0065242196), (968, 0.0063064895),
(259, 0.0051229554), (330, 0.0046631121), (760, 0.0044421358), (478, 0.0042510382), (331, 0.0039331503), (728, 0.003812969),
(280, 0.0035846629), (588, 0.0033092475), (861, 0.0028945252), (332, 0.0026644215), (333, 0.0022166823), (151, 0.0021597522),
(356, 0.0018406865), (552, 0.0016959301), (435, 0.00094394217), (896, 0.00084631733), (937, 0.00082845741), (335, 0.00076790486),
(897, 0.0007364807), (519, 0.00072649814), (674, 0.00063642312), (457, 0.00062823156), (263, 0.00055513595), (969, 0.00043508445),
(773, 0.00041424474), (794, 0.00039454823), (230, 0.00037321725), (534, 0.00036081325), (104, 0.00032497221), (272, 0.00032023937),
(473, 0.0003057541), (725, 0.00030245754), (742, 0.00029926837), (722, 0.00028606801), (987, 0.00024712173), (622, 0.00024177019),
(274, 0.00023734267),
下面是分类的过程bvlc_reference_caffenet:
模型bvlc_reference_caffenet 是用于分类的:
- BAIR Reference CaffeNet in
models/bvlc_reference_caffenet: AlexNet trained on ILSVRC 2012, with a minor variation from the version as described in ImageNet classification with deep convolutional neural networks by Krizhevsky et al. in NIPS 2012. (Trained by Jeff Donahue @jeffdonahue)

./build/examples/cpp_classification/classification.bin \ models/bvlc_reference_caffenet/deploy.prototxt \ models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \ data/ilsvrc12/imagenet_mean.binaryproto \ data/ilsvrc12/synset_words.txt \ examples/images/cat.jpg
sea@sea-X550JK:~/caffe$ ./build/examples/cpp_classification/classification.bin \ > models/bvlc_reference_caffenet/deploy.prototxt \ > models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \ > data/ilsvrc12/imagenet_mean.binaryproto \ > data/ilsvrc12/synset_words.txt \ > examples/images/cat.jpg ---------- Prediction for examples/images/cat.jpg ---------- 0.3134 - "n02123045 tabby, tabby cat" 0.2380 - "n02123159 tiger cat" 0.1235 - "n02124075 Egyptian cat" 0.1003 - "n02119022 red fox, Vulpes vulpes" 0.0715 - "n02127052 lynx, catamount"
预测的实例/图像/————————cat.jpg
“n02123045 46 6猫,虎斑猫”
“n02123159 0.2380老虎猫”
“n02124075 0.1235埃及猫”
“n02119022 0.1003赤狐,狐狐”
“n02127052猞猁,0.0715美洲豹”
./build/examples/cpp_classification/classification.bin \ models/bvlc_reference_caffenet/deploy.prototxt \ models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \ data/ilsvrc12/imagenet_mean.binaryproto \ data/ilsvrc12/synset_words.txt \ /home/sea/Downloads/images/person.jpeg
/home/sea/Downloads/images/person.jpeg

---------- Prediction for /home/sea/Downloads/images/person.jpeg ---------- 0.8322 - "n04350905 suit, suit of clothes" 0.0799 - "n04591157 Windsor tie" 0.0588 - "n02883205 bow tie, bow-tie, bowtie" 0.0051 - "n10148035 groom, bridegroom" 0.0041 - "n02865351 bolo tie, bolo, bola tie, bola"
“n04350905 0.8322服,服之衣”
“n04591157 0.0799领带。”
“n02883205 0.0588蝴蝶结领带,领结,bowtie”
“n10148035马夫,bridegroom率”
“n02865351联络0.0041蛋糕,蛋糕,球铁,球”
识别装修图片:
./build/examples/cpp_classification/classification.bin \ models/bvlc_reference_caffenet/deploy.prototxt \ models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \ data/ilsvrc12/imagenet_mean.binaryproto \ data/ilsvrc12/synset_words.txt \ /home/sea/Downloads/images/a.jpg

> /home/sea/Downloads/images/a.jpg ---------- Prediction for /home/sea/Downloads/images/a.jpg ---------- 0.3274 - "n04081281 restaurant, eating house, eating place, eatery" 0.1335 - "n03761084 microwave, microwave oven" 0.1196 - "n03661043 library" 0.0768 - "n04553703 washbasin, handbasin, washbowl, lavabo, wash-hand basin" 0.0710 - "n03742115 medicine chest, medicine cabinet"
0.3274“n04081281餐厅,吃房子,吃的地方,餐馆” 0.1335“n03761084微波,微波炉” 0.1196“n03661043图书馆” 0.0768“n04553703洗脸盆,洗手盆,洗脸盆,洗手盆,洗手盆” 0.0710“n03742115药箱,药箱”
目标检测、定位的+目标识别的fetch_faster_rcnn_models:
https://github.com/rbgirshick/py-faster-rcnn/blob/master/data/scripts/fetch_faster_rcnn_models.sh
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Download pre-computed Faster R-CNN detectors cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh This will populate the $FRCN_ROOT/data folder with faster_rcnn_models. See data/README.md for details. These models were trained on VOC 2007 trainval.
ref https://github.com/rbgirshick/py-faster-rcnn/blob/master/data/scripts/fetch_faster_rcnn_models.sh
目标检测--resnet-50:
./build/examples/cpp_classification/classification.bin \ /media/sea/wsWin10/wsWindows10/ws_caffe/model-zoo/ResNet-50/deploy.prototxt \ /media/sea/wsWin10/wsWindows10/ws_caffe/model-zoo/ResNet-50/ResNet-50-model.caffemodel \ data/ilsvrc12/imagenet_mean.binaryproto \ data/ilsvrc12/synset_words.txt \ /home/sea/Downloads/images/a.jpg
人脸识别的:
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采

浙公网安备 33010602011771号