#基于用户的推荐类算法
from math import sqrt
#计算两个person的欧几里德距离
def sim_distance(prefs,person1,person2):
si = {}
for item in prefs(person1):
if item in prefs(person2):
si[item] = 1
if len(si) == 0:
return 0
sum_of_squares = sum([pow(prefs[person1][item]-prefs[person2][item],2) for item in prefs[person1] if item in prefs[person2]])
return 1/(1+sqrt(sum_of_squares))
#计算两个person 的皮尔逊相关系数
def sim_person(prefs,p1,p2,n=5):#n指的时电影评分满分是5
si = {}
for item in prefs[p1]:
if item in prefs[p2]:
return 1
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si])
sum1Sq = sum([pow(prefs[p1][it],2) for it in si])
sum2Sq = sum([pow(prefs[p2][it],2) for it in si])
pSum = sum([prefs[p1][it]*prefs[p2][it],2] for it in si)
num = pSum - (sum1*sum2/n)
den = sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den == 0:
return 0
r = num/den
return r
#返回跟输入person的相似排名结果
def topMatches(prefs,person,n=5,similarity = sim_person):
scores = [(similarity(prefs,person,other,n),other) for other in prefs if other != person]
scores.sort()
scores.reverse()
return scores[0:n]
#针对person进行推荐
def getRecommenddation(prefs,person,similarity = sim_person):
totals = {}
simSums = {}
for other in prefs:
if other == person:
continue
sim = similarity(prefs,person,other)
if sim < 0:
continue
for item in prefs[other]:
if item not in prefs[person] or prefs[person][item] == 0:
totals.setdefault(item,0)
totals[item] += prefs[other][item]*sim
simSums.setdefault(item,0)
simSums[item] += sim
rankings = [(totals/simSums[item],item) for item,totals in totals.items()]
rankings.sort()
rankings.reverse()
return rankings
critics = {
'Jack':{'See You Again':4.5,'Try Everything':3.5,'Let it Go':5.0,'Sugar':3.5,'Sorry':2.5,'Baby':3.0},
'Michael':{'See You Again':2.5,'Try Everything':3.0,'Let it Go':3.0,'Sorry':3.5},
'Petter':{'See You Again':2.5,'Try Everything':3.5,'Let it Go':3.0,'Sugar':4.5,'Sorry':4.5,'Animals':2.0},
'Tom':{'See You Again':4.5,'Try Everything':4.0,'Let it Go':5.0},
}
#w为tom进行电影推荐
print(getRecommenddation(critics,"Tom"))