leetcode刷题题解之无重复字符的最长子串
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: "pwwkew" 输出: 3 解释: 因为无重复字符的最长子串是"wke",所以其长度为 3。 请注意,你的答案必须是 子串 的长度,"pwke"是一个子序列,不是子串。
📺视频题解
📖文字题解
方法一:滑动窗口
思路和算法
我们先用一个例子来想一想如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 为例,找出 从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 ;
- 以 开始的最长字符串为 。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 。那么当我们选择第 个字符作为起始位置时,首先从 到 的字符显然是不重复的,并且由于少了原本的第 个字符,我们可以尝试继续增大 ,直到右侧出现了重复字符为止。
这样以来,我们就可以使用「滑动窗口」来解决这个问题了:
-
我们使用两个指针表示字符串中的某个子串(的左右边界)。其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 ;
-
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
-
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// 哈希集合,记录每个字符是否出现过
unordered_set<char> occ;
int n = s.size();
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
int rk = -1, ans = 0;
// 枚举左指针的位置,初始值隐性地表示为 -1
for (int i = 0; i < n; ++i) {
if (i != 0) {
// 左指针向右移动一格,移除一个字符
occ.erase(s[i - 1]);
}
while (rk + 1 < n && !occ.count(s[rk + 1])) {
// 不断地移动右指针
occ.insert(s[rk + 1]);
++rk;
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = max(ans, rk - i + 1);
}
return ans;
}
};
class Solution {
public int lengthOfLongestSubstring(String s) {
// 哈希集合,记录每个字符是否出现过
Set<Character> occ = new HashSet<Character>();
int n = s.length();
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
int rk = -1, ans = 0;
for (int i = 0; i < n; ++i) {
if (i != 0) {
// 左指针向右移动一格,移除一个字符
occ.remove(s.charAt(i - 1));
}
while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {
// 不断地移动右指针
occ.add(s.charAt(rk + 1));
++rk;
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = Math.max(ans, rk - i + 1);
}
return ans;
}
}
class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
# 哈希集合,记录每个字符是否出现过
occ = set()
n = len(s)
# 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
rk, ans = -1, 0
for i in range(n):
if i != 0:
# 左指针向右移动一格,移除一个字符
occ.remove(s[i - 1])
while rk + 1 < n and s[rk + 1] not in occ:
# 不断地移动右指针
occ.add(s[rk + 1])
rk += 1
# 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = max(ans, rk - i + 1)
return ans
var lengthOfLongestSubstring = function(s) {
// 哈希集合,记录每个字符是否出现过
const occ = new Set();
const n = s.length;
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
let rk = -1, ans = 0;
for (let i = 0; i < n; ++i) {
if (i != 0) {
// 左指针向右移动一格,移除一个字符
occ.delete(s.charAt(i - 1));
}
while (rk + 1 < n && !occ.has(s.charAt(rk + 1))) {
// 不断地移动右指针
occ.add(s.charAt(rk + 1));
++rk;
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = Math.max(ans, rk - i + 1);
}
return ans;
};
func lengthOfLongestSubstring(s string) int {
// 哈希集合,记录每个字符是否出现过
m := map[byte]int{}
n := len(s)
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
rk, ans := -1, 0
for i := 0; i < n; i++ {
if i != 0 {
// 左指针向右移动一格,移除一个字符
delete(m, s[i-1])
}
for rk + 1 < n && m[s[rk+1]] == 0 {
// 不断地移动右指针
m[s[rk+1]]++
rk++
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = max(ans, rk - i + 1)
}
return ans
}
func max(x, y int) int {
if x < y {
return y
}
return x
}
复杂度分析
-
时间复杂度:,其中 是字符串的长度。左指针和右指针分别会遍历整个字符串一次。
-
空间复杂度:,其中 表示字符集(即字符串中可以出现的字符), 表示字符集的大小。在本题中没有明确说明字符集,因此可以默认为所有 ASCII 码在 内的字符,即 。我们需要用到哈希集合来存储出现过的字符,而字符最多有 个,因此空间复杂度为 。


浙公网安备 33010602011771号