深入理解TCP协议及其源代码
1.TCP建立连接的三次握手过程

- 源端口和目的端口:各占2个字节,分别写入源端口号和目的端口号。
- 序号:占4个字节。序号使用mod
运算。TCP是面向字节流的,在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。故该字段也叫做“报文段序号”。
- 确认序号:占4个字节,是期望收到对方下一个报文段的第一个数据字节的序号。若确认序号=N,则表明:到序号N-1为止的所有数据都已正确收到。
- 数据偏移:占4位,表示TCP报文段的首部长度。注意,“数据偏移”的单位是32位字(即以4字节长的字为计算单位)。故TCP首部的最大长度为60字节。
- 保留:占6位,保留为今后使用,目前置为0;
- 紧急URG:当URG=1,表明紧急指针字段有效。这时发送方TCP就把紧急数据插入到本报文段数据的最前面,而在紧急数据后面的数据仍是普通数据。
- 确认ACK:当ACK=1时,确认字段才有效。当ACK=0时,确认号无效。TCP规定,在连接建立后所有传送的报文段都必须把ACK置1。
- 推送PSH:接收方TCP收到PSH=1的报文段,就尽快地交付给接收应用进程,而不再等到整个缓存都填满了后再向上交付。
- 复位RST:当RST=1时,表明TCP连接中出现严重差错,必须释放连接,然后再重新建立运输连接。
- 同步SYN:在连接建立时用来同步序号。当SYN=1而ACK=0时,表明这是一个连接请求报文段。对方若同意建立连接,则应在响应的报文段中使SYN=1和ACK=1。故SYN置为1,就表示这是一个连接请求和连接接收报文。
- 终止FIN:用来释放连接。当FIN=1时,表明此报文段的发送方的数据已发送完毕,并要求释放运输连接。
- 窗口:占2个字节。窗口值作为接收方让发送方设置其发送窗口的依据。
- 检验和:占2字节。检验和字段检验的范围包括首部和数据这两部分。和UDP数据报一样,在计算检验和时,也要在TCP报文段的前面加上12字节的伪首部。伪首部的格式与UDP用户数据报的伪首部一样,但要将伪首部第四个字段中的17 改为6(协议号),把第5字段中的UDP长度改为TCP长度。
- 紧急指针:占2字节。紧急指针仅在URG=1时才有意义,它指出本报文段中的紧急数据的字节数。
TCP三次握手

整个流程为:
- 客户端主动打开,发送连接请求报文段,将SYN标识位置为1,Sequence Number置为x(TCP规定SYN=1时不能携带数据,x为随机产生的一个值),然后进入SYN_SEND状态
- 服务器收到SYN报文段进行确认,将SYN标识位置为1,ACK置为1,Sequence Number置为y,Acknowledgment Number置为x+1,然后进入SYN_RECV状态,这个状态被称为半连接状态
- 客户端再进行一次确认,将ACK置为1(此时不用SYN),Sequence Number置为x+1,Acknowledgment Number置为y+1发向服务器,最后客户端与服务器都进入ESTABLISHED状态
2. MenuOS中验证三次握手过程
运行qemu:进入menu文件夹下,打开MenuOS,然后一直按c,直到完成一次replyhi/hello的过程。

从上图中可以看到,捕捉到的断点序列为1,2,4,5,1,3分别对应着socket,bind,listen,accept,socket,connect。至此已经验证了我们之前分析的TCP三次握手在底层API上的实现过程,接下来我们具体分析每个过程完成的功能。我们发现socket,bind,listen,accept,connect都在socket.c文件中,我们来逐一分析一下源码
(1)sokect函数
//socket参数意义分别为 family:即协议族,type:指定socket类型,protocol:故名思义,就是指定协议 int __sys_socket(int family, int type, int protocol) { int retval; struct socket *sock; int flags; /* Check the SOCK_* constants for consistency. */ BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; retval = sock_create(family, type, protocol, &sock); if (retval < 0) return retval; //sock_map_fd就是一个用于通信的套接字文件描述符,这个套接字描述符可以作为稍后bind()函数的绑定对象 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); } SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) { return __sys_socket(family, type, protocol); }
socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符,它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。当我们调用socket函数创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个
具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()、listen()时系统会自动随机分配一个端口。
(2)bind函数
//bind的参数分别为 fd:即socket描述字,umyaaddr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址, //addrlen:对应的是地址的长度 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { err = move_addr_to_kernel(umyaddr, addrlen, &address); if (!err) { err = security_socket_bind(sock, (struct sockaddr *)&address, addrlen); if (!err) err = sock->ops->bind(sock, (struct sockaddr *) &address, addrlen); } fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) { return __sys_bind(fd, umyaddr, addrlen); }
bind()函数把一个地址族中的特定地址赋给socket。
通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),调用bind函数时将IP端口绑定到套接字上,也就是我们后面显示的通信IP地址。
(3)accept函数
//accept函数的参数分别为 fd:socket描述字,upeer_sockaddr:指向struct sockaddr *的指针,用于返回客户端的协议地址, //upeer_addrlen:协议地址的长度,flag为0时accept和accept4效果相同 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { struct socket *sock, *newsock; struct file *newfile; int err, len, newfd, fput_needed; struct sockaddr_storage address; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = -ENFILE; newsock = sock_alloc(); if (!newsock) goto out_put; newsock->type = sock->type; newsock->ops = sock->ops; /* * We don't need try_module_get here, as the listening socket (sock) * has the protocol module (sock->ops->owner) held. */ __module_get(newsock->ops->owner); newfd = get_unused_fd_flags(flags); if (unlikely(newfd < 0)) { err = newfd; sock_release(newsock); goto out_put; } newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); if (IS_ERR(newfile)) { err = PTR_ERR(newfile); put_unused_fd(newfd); goto out_put; } err = security_socket_accept(sock, newsock); if (err) goto out_fd; err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); if (err < 0) goto out_fd; if (upeer_sockaddr) { len = newsock->ops->getname(newsock, (struct sockaddr *)&address, 2); if (len < 0) { err = -ECONNABORTED; goto out_fd; } err = move_addr_to_user(&address, len, upeer_sockaddr, upeer_addrlen); if (err < 0) goto out_fd; } /* File flags are not inherited via accept() unlike another OSes. */ fd_install(newfd, newfile); err = newfd; out_put: fput_light(sock->file, fput_needed); out: return err; out_fd: fput(newfile); put_unused_fd(newfd); goto out_put; } SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); } SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); }
以上系统调用函数阐述了TCP协议建立连接的过程。因此,TCP的三次握手可以总结如下:
1.服务端的socket初始化。
2.服务端进行bind进行端口绑定,并设置监听函数listen()监听来自客户端的连接请求。
3.客户端进行socket初始化。
4.客户端发出connect请求,connect阻塞。
5.服务端同意连接之后执行accept()函数,此时accept阻塞,服务端发送回应信息给客户端。
6.客户端收到服务端的回应信息之后,完成connect,发送回应信息给服务端。
7.服务端accept()执行完成。
至此,TCP的三次握手就已经完成了,然后就可以开始进行端与端之间的信息传递。

浙公网安备 33010602011771号