Codeforces Round #258 (Div. 2)
Codeforces Round #258 (Div. 2)
A:交叉点个数为min(n, m),所以直接推断min(n, m)的奇偶性就可以
B:多开一个数组,保存重排后的序列,然后把两个序列从左边往右和从右边往左,推到都不同样的位置,然后在不同样的一段上,头尾比較推断相不同样就可以
C:在纸上画一画非常easy看出分4种情况讨论,各自是a > b > c, a < b < c, a > b < c, a < b > c
4种情况有一种符合条件就可以
D:非常easy看出,字符串中仅仅要首尾同样,就是回文,那么对于奇数的长度,仅仅要选选首尾都是奇数位置或都是偶数位置就可以,对于偶数长度,就选首尾寄偶性不同的长度就可以,那么能够先预处理出奇数位置的a有多少个,偶数位置的a有多少个,奇数位置的b有多少个,偶数位置的b有多少个,那么奇数长度为C(奇a, 2) + C(奇b, 2) + C(偶a, 2) + C(偶b, 2) + len(长度为1的也是回文),偶数长度为奇a 偶a + 偶a 奇b
E:用容斥原理搞,中间要求大组合数,只是因为推出来的公式中C(n, m)的m并不会超过20,所以每一个值利用逆元直接去计算就可以,容斥是这样做:已知n个组成s,不限值个数的话,用隔板法求出情况为C(s + n - 1, n - 1),可是这部分包括了超过了,那么就利用二进制枚举出哪些是超过的,实现把s减去f(i) + 1这样就保证这个位置是超过的,减去这部分后,有多减的在加回来,这就满足了容斥原理的公式,个数为奇数的时候减去,偶数的时候加回
代码:
A:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, m;
int main() {
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
printf("%s\n", n % 2 ? "Akshat" : "Malvika");
return 0;
}B:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
int n, a[N], b[N];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(a, a + n);
int l = 0, r = n - 1;
while (l <= n - 1 && a[l] == b[l]) {
l++;
}
while (r >= 0 && a[r] == b[r]) {
r--;
}
if (l >= r) {
printf("yes\n");
printf("1 1\n");
}
else {
int flag = 1;
int aa = l, bb = r;
for (int i = l; i <= r; i++) {
if (a[i] != b[r - i + l]) {
flag = 0;
break;
}
}
if (flag) {
printf("yes\n");
printf("%d %d\n", aa + 1, bb + 1);
}
else printf("no\n");
}
return 0;
}C:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long ll;
ll t, n, k, d1, d2;
bool j1(ll n, ll k, ll d1, ll d2) {
if (d1 + d2 + d2 > k) return false;
ll sum = d1 + d2 + d2 + n - k;
if (sum % 3 == 0 && sum / 3 >= d1 + d2) return true;
return false;
}
bool j2(ll n, ll k, ll d1, ll d2) {
if (d1 + d1 + d2 > k) return false;
ll sum = d1 + d1 + d2 + n - k;
if (sum % 3 == 0 && sum / 3 >= d1 + d2) return true;
return false;
}
bool j3(ll n, ll k, ll d1, ll d2) {
if (d1 + d2 > k) return false;
ll sum = d1 + d2 + n - k;
ll Max = max(d1, d2);
if (sum % 3 == 0 && sum / 3 >= Max) return true;
return false;
}
bool j4(ll n, ll k, ll d1, ll d2) {
ll Min = min(d1, d2);
ll Max = max(d1, d2);
ll sum = 2 * abs(d1 - d2) + Min + n - k;
if (2 * abs(d1 - d2) + Min > k) return false;
if (sum % 3 == 0 && sum / 3 >= Max) return true;
return false;
}
bool judge(ll n, ll k, ll d1, ll d2) {
if (n % 3) return false;
if (j1(n, k, d1, d2)) return true;
if (j2(n, k, d1, d2)) return true;
if (j3(n, k, d1, d2)) return true;
if (j4(n, k, d1, d2)) return true;
return false;
}
int main() {
scanf("%lld", &t);
while (t--) {
scanf("%lld%lld%lld%lld", &n, &k, &d1, &d2);
if (judge(n, k, d1, d2)) printf("yes\n");
else printf("no\n");
}
return 0;
}D:
#include <cstdio>
#include <cstring>
const int N = 100005;
char str[N];
long long ja, jb, oa, ob;
long long ansj, anso;
int main() {
scanf("%s", str + 1);
int len = strlen(str + 1);
for (int i = 1; i <= len; i++) {
if (i % 2 && str[i] == 'a') ja++;
if (i % 2 && str[i] == 'b') jb++;
if (i % 2 == 0 && str[i] == 'a') oa++;
if (i % 2 == 0 && str[i] == 'b') ob++;
}
ansj = ja * (ja - 1) / 2 + jb * (jb - 1) / 2 + oa * (oa - 1) / 2 + ob * (ob - 1) / 2;
ansj += len;
anso = ja * oa + jb * ob;
printf("%lld %lld\n", anso, ansj);
return 0;
}E:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const long long MOD = 1000000007;
const int N = 25;
long long n, s, f[N];
long long pow(long long x, long long k) {
long long ans = 1;
while (k) {
if (k&1) ans = ans * x % MOD;
x = x * x % MOD;
k >>= 1;
}
return ans;
}
long long C(long long n, long long m) {
if (m > n) return 0;
m = min(m, n - m);
long long zi = 1, mu = 1;
for (long long i = 0; i < m; i++) {
zi = zi * (n - i) % MOD;
mu = mu * (i + 1) % MOD;
}
return zi * pow(mu, MOD - 2) % MOD;
}
long long Lucas(long long n, long long m, long long p) {
if (m == 0) return 1;
return C(n % p, m % p) * Lucas(n / p, m / p, p) % p;
}
int bitcount(long long x) {
return x == 0 ? 0 : bitcount(x / 2) + (x&1);
}
int main() {
scanf("%lld%lld", &n, &s);
for (int i = 0; i < n; i++)
scanf("%lld", &f[i]);
long long maxs = (1<<n);
long long ans = 0;
for (int i = 0; i < maxs; i++) {
long long sum = s;
for (int j = 0; j < n; j++) {
if (i&(1<<j)) {
sum -= (f[j] + 1);
}
if (sum < 0) break;
}
if (sum < 0) continue;
int tmp = bitcount(i);
if (tmp&1) ans -= Lucas(sum + n - 1, n - 1, MOD);
else ans += Lucas(sum + n - 1, n - 1, MOD);
}
ans = (ans % MOD + MOD) % MOD;
printf("%lld\n", ans);
return 0;
}
浙公网安备 33010602011771号