集合(三) HashMap

三、Map

先来讲一下Map,Map和Collection完全不是一个系列的,按理说讲完Collection的List,应该接着讲Collection的Set,但是因为Set中很多实现是基于Map来实现的,所以将Map提前。Map是一个接口,存储内容是键值对key-value,键不可重复。

1.HashMap

AbstractMap是实现Map接口的抽象类,HashMap继承于AbstractMap。

Map的API:(JDK1.8版本新增较多,为25个详见 https://docs.oracle.com/javase/8/docs/api/index.html)

abstract void                 clear()
abstract boolean              containsKey(Object key)
abstract boolean              containsValue(Object value)
abstract Set<Entry<K, V>>     entrySet()
abstract boolean              equals(Object object)
abstract V                    get(Object key)
abstract int                  hashCode()
abstract boolean              isEmpty()
abstract Set<K>               keySet()
abstract V                    put(K key, V value)
abstract void                 putAll(Map<? extends K, ? extends V> map)
abstract V                    remove(Object key)
abstract int                  size()
abstract Collection<V>        values()

 AbstractMap的API只比Map新增了两个方法:

String               toString()
Object               clone()

Map.Entry是Map类的静态接口,其API为 :

abstract boolean     equals(Object object)
abstract K           getKey()
abstract V           getValue()
abstract int         hashCode()
abstract V           setValue(V object)

 HashMap是线程不安全的,其key和value都可以是null。此外,HashMap不是有序的映射(什么是有序? 2019.1.1补:遍历的顺序和插入的顺序无直接关系)。

(1)HashMap成员域

HashMap基本成员域有:

    transient Node<K,V>[] table;
    transient Set<Map.Entry<K,V>> entrySet;
    transient int size;
    transient int modCount;
    int threshold;
    final float loadFactor;

table即为实现hashmap的核心,数组的每个元素是Node类型,本质上是一个链表,用于存储键值对。JDK7以下的table可以用下图来表示原理:

size是存储键值对的个数,loadfactor称为装载因子,默认为0.75,threshold=capacity*loadfactor,如果size大于阈值threshold就要进行扩容,而容量一般是2的幂数。因此loadfactor作用是为了使哈希中的存储更加均匀,减小冲突。显而易见的是,如果想节省存储空间,那么loadfactor应该设置的大一点(记住减少扩容就很好理解了),若想提高查询效率,loadfactor应该设置的大一点。

Note:桶的数量即为capacity。

(2)HashMap的构造函数

HashMap共有四种构造函数:

public HashMap()
public HashMap(int initialCapacity)
public HashMap(int initialCapacity,float loadFactor)
public HashMap(Map<? extends K,? extends V> m)

 HashMap默认设置容量capacity为16,而装载因子loadfactor为0.75,也可以按照上面构造函数自定义。

详细的构造函数如下面的代码:

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
HashMap Construct Functions

(3)“拉链法"

众所周知,哈希冲突的时候最经典的处理方法有再哈希和拉链法,HashMap采用的正是后者。这次我们来详细探讨以下拉链法相关的内容。

 Node的数据结构

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
Class Node

可以看出Node不过是一个单链表,值得注意的是该链表的数据域中有一个hash的整型变量,代表该节点的哈希值。还有一个hashCode()方法,我决定和插入一起讲解可能效果会好一些。

(4)HashMap的插入put()方法

来看put()方法的源码: 

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

接着来看hash()方法和putVal的源码:  

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
上面代码量极少,效率极高,令人咂舌。
(h = key.hashCode()) ^ (h >>> 16)这行代码代表计算出key的hashCode()之后把高16位和低16位进行异或操作(相同结果为0,不同结果为1)得到新元素(姑且将一个键值对称为一个元素)的hash值
高低16位的异或操作,图片来源见图水印

然后开始执行putVal()方法,一定详细来看,首先是第一个if语句

        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
resize function

(tab=table) == null是什么概念?经过简单的实验可以知道,这句代码将table赋值给tab,然后判断这个值是否等于null?然后返回相应的boolean值,也就是说如果现有table是null或者tab的长度为0时,(注意!是先执行或语句前面的部分给tab赋值,之后或语句后面才有意义)则执行resize()操作扩容,也意味着HashMap中没有任何元素,虽然暂时不清楚两个条件有什么区别?

        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);

有了前面图中的基础之后,可以知道,(n-1) & hash找出将要插入的下标并赋值给i,这个桶中如果没有任何元素,或者说这个地方链表还没形成,那么直接new一个新的节点放在这个位置,而且没有后续节点,如下是newNode()方法的代码:

    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

 接着来:

        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;

否则判断这个元素的key是否已经存在,如果是将首元素赋值给e.

            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);

判断p是否是树节点,如果是将e申请一个新的树节点,这也是HashMap1.8的主要改变,即如果链表过长时,就会从链表转换为红黑树(之后新开详细讲解)。

            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }

若p不是树节点,意味着仍是链表存储,此时需要遍历链表,查看新增节点后是否超过TREEIFY_THRESHOLD,也即树化的阈值,默认为8.如果超过,就调用treeifyBin进行树化,将链表转为红黑树的形式存储,提高查找效率。

                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }

这段怎么看着有点熟悉,没错,这里是遍历链表时发现有和新元素key重复的情况,跳出循环,而最后的p = e其实困惑了我一段时间,实际上这里是为了遍历的一部分,类似于p = p.next使链表向前推进。

            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }

这里代表已经存在key的映射,将新的value值赋给此节点。

        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
}

modCount的含义一两句话解释不清楚,大致可以理解为集合被修改的次数,而如果插入后新的size已经大于阈值,那么扩容。

(4)HashMap的使用

插入、覆盖现象以及使用iterator进行遍历。

    public static void main(String [] args)
    {
              HashMap hm=new HashMap ();
              hm.put("20142480135","武一鸣");
              hm.put("20142480136","张三");
              hm.put("20142480135","李四");
        Iterator it= hm.entrySet().iterator();
        while(it.hasNext())
        {
            java.util.Map.Entry entry= (java.util.Map.Entry)it.next();
            String key=(String) entry.getKey();
            String value=(String) entry.getValue();
            System.out.println("the key is "+key+" and the value is "+value);
        }
    }

 直接打印、键值对个数、删除以及keySet()和values()方法

        System.out.println("Map:"+hm);
        System.out.println("the size is "+hm.size());
        hm.remove("20142480135");
        hm.put("20142480137","王五");
        Iterator it1= hm.keySet().iterator();    //keySet()返回Set对象
        while(it1.hasNext())
        {
            String key=(String)it1.next();
            System.out.println("the key is "+key);

        }
        Iterator it2= hm.values().iterator();    //values()返回Collection对象
        while(it2.hasNext())
        {
            String values=(String)it2.next();
            System.out.println("the value is "+values);

        }

 

此外,clear()、isEmpty()方法不言而喻。分别是清空和判断是否为空。

get(Object key)返回对应的value值,如果没有这个key返回null。

containsKey(Object key)和containsValue(Object value)均返回boolean值,判断是否包含该键或该值。

posted @ 2019-05-12 22:42  LeftBody  阅读(162)  评论(0编辑  收藏  举报