洛谷P3964 [TJOI2013]松鼠聚会
这个小辣鸡怎么连切比雪夫距离都不会啊。。。
题目
https://www.luogu.com.cn/problem/P3964
思路
切比雪夫距离
定义
点\((x1,y1)\)到\((x2,y2)\)的切比雪夫距离为: \(dis=max(\lvert x1-x2\rvert,\lvert y1-y2\rvert)\)
切比雪夫距离与曼哈顿距离的变换
显然这个东西既包含绝对值又包含最值,非常不好处理。
但是我们有一种转化方法珂以将切比雪夫距离转化成曼哈顿距离。当然逆变换也必然是存在的。我这里推一遍曼哈顿距离到切比雪夫距离的变换。
假设两个点为\((x1,y1)\),\((x2,y2)\),那么它们的曼哈顿距离为:\(\lvert x1-x2\rvert + \lvert y1-y2\rvert\),考虑把绝对值拆掉:
\(\lvert x1-x2\rvert + \lvert y1-y2\rvert\)=\(max(x1-x2+y1-y2 , x1-x2+y2-y1 , x2-x1+y1-y2 , x2-x1+y2-y1)\)
现在发现式子已经变成了一个max的形式。注意到\(x1-x2+y1-y2=-(x2-x1+y2-y1)\),把式子中互为相反数的部分并在一起,得:
\(max(max(x1-x2+y1-y2,x2-x1+y2-y1),max(x1-x2+y2-y1,x2-x1+y1-y2))\)
就是\(max(\lvert x1-x2+y1-y2\rvert,\lvert x1-x2-(y1-y2)\rvert)\)
=\(max(\lvert x1+y1-(x2+y2)\rvert,\lvert x1-y1-(x2-y2)\rvert)\)
对照切比雪夫距离的定义,我们令 \(x1'=x1+y1\) , \(y1'=x1-y1\) , \(x2'=x2+y2\) , \(y2'=x2-y2\)
则距离可写为 \(max(\vert x1'-x2'\rvert,\lvert y1'-y2'\rvert)\)
所以曼哈顿意义下的\((x,y)\),对应于切比雪夫意义下的\((x+y,x-y)\)
同样,我们珂以很容易地做一个逆变换,把切比雪夫意义下的\((x,y)\)映射到曼哈顿意义下的\((\frac{x+y}{2},\frac{x-y}{2})\)。
(这堆式子用了markdown还是好丑啊,其实自己在草稿上推一遍挺快的qwq)
解题
现在问题变成了,给出一堆点,求其中的一个点,使所有点到该点的曼哈顿距离之和最小。
枚举每一个点,计算集合点在该点的代价。那就是很经典的珂以用前缀和维护的问题了。
代码
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define ll long long
#define maxn (int)(1e5+10)
using namespace std;
struct point{
ll x,y;
} p[maxn];
bool cmp1(point p1,point p2){
return p1.x<p2.x;
}
bool cmp2(point p1,point p2){
return p1.y<p2.y;
}
ll X[maxn],Y[maxn];
ll pre_x[maxn],pre_y[maxn];
int n;
ll cal(int id){
ll sum=0;
int i;
i=lower_bound(X+1,X+n+1,p[id].x)-X;
sum+=(p[id].x*(i-1)-pre_x[i-1])+(pre_x[n]-pre_x[i-1]-p[id].x*(n-i+1));
i=lower_bound(Y+1,Y+n+1,p[id].y)-Y;
sum+=(p[id].y*(i-1)-pre_y[i-1])+(pre_y[n]-pre_y[i-1]-p[id].y*(n-i+1));
return sum;
}
int main(){
int i;
ll tx,ty;
ll ans=-1;
scanf("%d",&n);
for(i=1;i<=n;++i){
scanf("%lld%lld",&tx,&ty);
p[i].x=tx+ty;p[i].y=tx-ty;
}
sort(p+1,p+n+1,cmp2);
for(i=1;i<=n;++i){
Y[i]=p[i].y;
pre_y[i]=pre_y[i-1]+Y[i];
}
sort(p+1,p+n+1,cmp1);
for(i=1;i<=n;++i){
X[i]=p[i].x;
pre_x[i]=pre_x[i-1]+X[i];
}
for(i=1;i<=n;++i){
ans=ans<0?cal(i):min(ans,cal(i));
}
printf("%lld",ans/2);
// system("pause");
return 0;
}

浙公网安备 33010602011771号