LeetCode Unique Paths

class Solution {
public:
    int uniquePaths(int m, int n) {
        int (*dp)[101] = new int[101][101];
        for (int i=0;i<101;i++) dp[0][i] = 0;
        for (int i=0;i<101;i++) dp[i][0] = 0;
        dp[0][1] = 1;
        for (int i=1; i<=m; i++) {
            for (int j=1; j<=n; j++) {
                // to reach (i,j), we can move from 
                // 1. (i, j-1), move right 1 block
                // 2. (i-1, j), move down 1 block
                dp[i][j] = dp[i][j-1] + dp[i-1][j];
            }
        }
        return dp[m][n];
    }
};

1. 存在直接的计算公式组合数C(m+n-2, n-1),在m+n-2步移动中选取n-1或m-1种为相应维度上的移动方式(向右或向下)

2. 采用动态规划,要是学高级数据结构时老师能先举个这样简单的例子就好了。

dp[i][j]代表到达坐标(i, j)(i、j从1开始编号)的路径种数,因为题目规定只能向右或者向下移动,所以在dp[i][j]的上一步,其坐标肯定是

  • (i, j-1), 向右移动得到(i, j)
  • (i-1, j), 向下移动得到(i, j)

那么到达(i, j)的路径总数就是这两种情况的和即dp[i][j] = dp[i-1][j] + dp[i][j-1]

 

不过题目虽然说 "m and n will be at most 100.", 但是其测试数据显然没有达到这个范围,因为返回的是int类型,而这个问题的解数目会迅速增加,(100, 100)时数量级别是10的58次方,或许答案可以改为mod一个数后的取值。

第二轮:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

可以把上面dp的数组简化到一维:

// 13:10
class Solution {
public:
    int uniquePaths(int m, int n) {
        if (m <= 0 || n <= 0) return 0;
        int* dp = new int[n+1];
        for(int i=0; i<=n; i++) dp[i] = 0;
        dp[1] = 1;
        for (int i=0; i<m; i++) {
            for (int j=1; j<=n; j++) {
                dp[j] = dp[j] + dp[j-1];
            }
        }
        return dp[n];
    }
};

 

posted @ 2014-03-14 16:58  卖程序的小歪  阅读(158)  评论(0)    收藏  举报