Apache Kafka开发入门指南

作者:chszs,转载需注明。博客主页:http://blog.csdn.net/chszs

Apache Kafka可以帮助你解决在发布/订阅架构中遇到消费数百万消息的问题。
如今,商业应用、社交应用以及其它类型的应用产生的实时信息在不断增长,这些信息需要以简单的方式快速、可靠地路由到各种类型的接收者。在大多数情况下,产生信息和消费信息的应用都是自然分开的,彼此不可互相访问。
需要一种机制,让信息的生产者和消费者能无缝地集成。
在大数据时代,收集数据也是一个挑战——因为数据量太大。第二个挑战是分析数据,它通常分为:
1)用户行为数据
2)应用程序性能跟踪
3)日志形式的活动数据
4)事件消息

消息订阅是一种机制,可以连接各种应用程序,帮助消息在彼此之间路由。
Kafka是一个实时消息传输的解决方案,可处理大量实时信息,并把这些信息快速路由到各种消费者。Kafka提供了信息生产者和消费者之间的无缝集成,无需对生产者的信息进行阻塞,也无需告诉生产者那些消费者的位置。

Apache Kafka是一个开源、分布式的消息发布/订阅系统,其主要设计特性如下:
1)消息持久化
要从大数据中获取真正的价值,那么不能丢失任何信息。Apache Kafka设计上是时间复杂度O(1)的磁盘结构,它提供了常量时间的性能,即使是存储海量的信息(TB级)。
2)高吞吐
记住大数据,Kafka的设计是工作在标准硬件之上,支持每秒数百万的消息。
3)分布式
Kafka明确支持在Kafka服务器上的消息分区,以及在消费机器集群上的分发消费,维护每个分区的排序语义。
4)多客户端支持
Kafka系统支持与来自不同平台(如java、.NET、PHP、Ruby或Python等)的客户端相集成。
5)实时
生产者线程产生的消息对消费者线程应该立即可见,此特性对基于事件的系统(比如CEP系统)是至关重要的。
注:CEP即Complex Event Processing,复杂事件处理。

Apache Kafka提供了一个实时的发布/订阅解决方案,它客服了消费实时大数据的挑战,这些数据量可能在数量级的增长、真实的数据。Kafka还支持在Hadoop系统上做并行数据载入。

下面的视图显示了Apache Kafka消息系统支持的一个典型的大数据汇聚和分析的场景:


在生产者端,有数种不同的生产者:
1)前端Web应用产生的应用日志
2)生产者代理产生的Web分析日志
3)生产者适配器产生的传输日志
4)生产者服务产生的调用跟踪日志

在消费者端,有数种不同的消费者:
1)离线消费者:消费消息并在Hadoop或传统的数据仓库中存储消息用于离线分析
2)近乎实时的消费者:消费消息并在任意NoSQL数据库(如HBase或Cassandra)中存储消息用于近实时分析
3)实时消费者:在内存数据库中过滤消息,并在相关的群组中触发警告事件

Apache Kafka目标是统一离线和在线处理,与Flume和Scribe相比较,Kafka在处理活动流数据方面更具优势。但是从架构的视野来看,Kafka与传统的消息系统(例如ActiveMQ或RabbitMQ)更相似一些。

注:Scribe 是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是 NFS、分布式文件系统等),以便于进行集中统计分析处理。它为日志的“分布式收集、统一处理”提供了一个可扩展的、高容错的方案。当中央存储系统的网络 或者机器出现故障时,Scribe会将日志转存到本地或者另一个位置,当中央存储系统恢复后,Scribe会将转存的日志重新传输给中央存储系统。 Scribe通常与Hadoop结合使用。Scribe用于向HDFS中push日志,而Hadoop通过MapReduce作业进行定期处理。

 

注:Flume 最早是Cloudera提供的高可用、高可靠、分布式的海量日志采集、聚合和传输的日志收集系统,目前归属于Apache,是Apache基金会下的一个孵化项目。Flume支持在日志系统中定制各类数据的发送方,用于收集数据;同时Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。Flume提供了从Console(控制台)、RPC(Thrift-RPC)、Text(文件)、Tail(UNIX tail)、Syslog(syslog日志系统,支持TCP和UDP等2种模式),Exec(命令执行)等数据源上收集数据的能力。Flume采用了多Master的方式。为了保证配置数据的一致性,Flume引入了ZooKeeper,用于保存配置数据,ZooKeeper本身可保证配置数据的一致性和高可用。另外,在配置数据发生变化时,ZooKeeper可以通知Flume Master节点。Flume Master间使用Gossip协议同步数据。

不少公司使用了Kafka:

 1)LinkedIn

 http://www.linkedin.com

 LinkedIn公司使用Apache Kafka作为活动数据的流化和运营度量。

2)DataSift

http://www.datasift.com

DataSift公司使用Apache Kafka作为监控事件的收集器以及用户消费的实时数据流的跟踪器。

 3)Twitter

 http://www.twitter.com

 Twitter公司使用Apache Kafka作为其Storm平台的一部分。

注:Storm是一个流处理架构。

4)Foursquare

http://www.foursquare.com

Foursquare公司使用Apache Kafka处理在线之间和在线与离线之间的消息传输,把Kafka与Foursquare监控和产品系统以及基于Hadoop的离线基础设施进行集成。

 5)Square

http://www.squareup.com

Square公司使用Apache Kafka作为总线,在Square的各个数据中心之间传输所有的系统事件,包括:度量、日志、自定义事件等等。在用户端,它输出到Splunk、Graphite或Esper实时警告。

 

二、Apache Kafka安装

Kafka是Apache的顶级项目之一,当前的最新版本为0.7.2稳定版,0.8版还是Beta版,但已经获得了很多大型公司的认可。与0.7.2版相比,Kafka 0.8版提供了很多高级特性,如下:

1)在0.8版之前,如果经纪人Broker失效,那么任何Topic内的未消费分区的数据可能会丢失。而0.8版对分区增加了复制因子,这确保了只要有一个复制集有效,那么任何未提交的消息都不会丢失。

2)早先的版本还确保了所有的生产者和消费者都是复制敏感的。默认情况下,生产者的消息发送请求会被阻塞,直到消息提交到所有活动的复制集上才会解除阻塞。但是,生产者还能被配置为提交消息到单个经纪人Broker。

3)与Kafka的生产者一样,Kafka的消费者的投票模型改为长轮询模型且会被阻塞,除非已提交的消息是有效的才会解除阻塞。

4)另外,Kafka 0.8版还配备了一套管理工具,比如集群的受控关机和领导复制选举工具等。

Apache Kafka 0.7.x版不能被0.8版所替代的主要原因是0.8版不能向后兼容。

如 果要把现有的基于Kafka 0.7.x版的集群迁移到基于0.8版的Kafka集群上,Apache Kafka提供了迁移工具。迁移工具实际上担当了基于Kafka 0.7.x版的集群的消费者的角色,并在基于0.8版的Kafka集群上担当了生产者重发布消息的角色。

下面的视图说明了整个迁移:

 

 

posted @ 2015-04-04 19:03  kylinfish  阅读(533)  评论(0)    收藏  举报