青蛙跳与超级青蛙跳

一、一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

            f(0) = 0

            f(1) = 1

            f(2) = 2

                        f(n) = f(n-1) + f(n-2)

f(n-1) = f(n-1-1) + f(n-1-2)          f(n-2) = f(n-2-1) + f(n-2-2)

class Solution:
    def jumpFloor(self, number):
        # write code here
        tag1 = 1
        tag2 = 2
        if number <= 3:
            return number
        tag3 = 0
        for i in xrange(3, number+1):
            tag3 = tag1 + tag2
            tag1 = tag2
            tag2 = tag3
        return tag3

二、一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

f(n) = 1 + f(n-1) + f(n-2) +.....+ f(1)

f(n-1) = 1 + f(n-2) + ..... +f(1)

f(1) = 1

f(2) = 1 + f(1) = 1 + 1 = 2

f(3) = 1 + f(2) + f(1) = 1 + 2 + 1 = 4

f(4) = 1 + f(3) + f(2) + f(1) = 1 +4 +2 +1 = 8

f(5) = 1 + f(4) + f(3) + f(2) + f(1) = 1 + 8 + 4 + 2 + 1 = 16

推测 f(n) = 2*f(n-1) ,f(1) = 1

进而推测f(n) = 2^(n-1)

数学归纳:

假设f(n) = 2^(n-1)成立

f(n) = 1 + f(n-1) + f(n-2) +.....+ f(1) = 2^(n-1)

要证明f(n-1)也满足f(n-1) = 2^(n-2),

f(n-1) = 1 + f(n-2) + ..... +f(1)

f(n) - f(n-1) = [1 + f(n-1) + f(n-2) +.....+ f(1)]-[1 + f(n-2) + ..... +f(1)] = f(n-1)

因此f(n) = 2*f(n-1)

又因为f(n) = 2^(n-1),所以f(n-1) = 2^(n-2),成立

class Solution:
    def jumpFloorII(self, number):
        # write code here
        return pow(2,number-1)

 

posted @ 2017-05-04 21:58  kuqs(奇小东)  阅读(287)  评论(0)    收藏  举报