青蛙跳与超级青蛙跳
一、一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
f(0) = 0
f(1) = 1
f(2) = 2
f(n) = f(n-1) + f(n-2)
f(n-1) = f(n-1-1) + f(n-1-2) f(n-2) = f(n-2-1) + f(n-2-2)
class Solution: def jumpFloor(self, number): # write code here tag1 = 1 tag2 = 2 if number <= 3: return number tag3 = 0 for i in xrange(3, number+1): tag3 = tag1 + tag2 tag1 = tag2 tag2 = tag3 return tag3
二、一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
f(n) = 1 + f(n-1) + f(n-2) +.....+ f(1)
f(n-1) = 1 + f(n-2) + ..... +f(1)
f(1) = 1
f(2) = 1 + f(1) = 1 + 1 = 2
f(3) = 1 + f(2) + f(1) = 1 + 2 + 1 = 4
f(4) = 1 + f(3) + f(2) + f(1) = 1 +4 +2 +1 = 8
f(5) = 1 + f(4) + f(3) + f(2) + f(1) = 1 + 8 + 4 + 2 + 1 = 16
推测 f(n) = 2*f(n-1) ,f(1) = 1
进而推测f(n) = 2^(n-1)
数学归纳:
假设f(n) = 2^(n-1)成立
f(n) = 1 + f(n-1) + f(n-2) +.....+ f(1) = 2^(n-1)
要证明f(n-1)也满足f(n-1) = 2^(n-2),
f(n-1) = 1 + f(n-2) + ..... +f(1)
f(n) - f(n-1) = [1 + f(n-1) + f(n-2) +.....+ f(1)]-[1 + f(n-2) + ..... +f(1)] = f(n-1)
因此f(n) = 2*f(n-1)
又因为f(n) = 2^(n-1),所以f(n-1) = 2^(n-2),成立
class Solution: def jumpFloorII(self, number): # write code here return pow(2,number-1)

浙公网安备 33010602011771号