一文弄懂HTTP常见面试题

1.http是什么,描述一下?

HTTP 是超文本传输协议,也就是HyperText Transfer Protocol,通俗的说 HTTP 是一个在计算机世界里专⻔在「两点」之间「传输」文字、图片、音频、视频等「超文本」数据的「约定和 规范」

2.http常见的状态码有哪些?

状态码  类别  原因 
1XX   

Informational(信息性状态码)

 

接受的请求正在处理

2XX   

Success(成功状态码)

请求正常处理完毕

 
3XX   

Redirection(重定向)

 

需要进行附加操作以完成请求

4XX   

Client error(客户端错误)

 

客户端请求出错,服务器无法处理请求

5XX   

Server Error(服务器错误)

 

服务器处理请求出错


2xx (3种)各类别常见状态码:

200 OK:表示从客户端发送给服务器的请求被正常处理并返回;如果是非 HEAD 请求,服务器返回的响应头都会有 body数据。

204 No Content:表示客户端发送给客户端的请求得到了成功处理,但在返回的响应报文中不含实体的主体部分(没有资源可以返回);

206 Patial Content:表示客户端进行了范围请求,并且服务器成功执行了这部分的GET请求,响应报文中包含由Content-Range指定范围的实体内容,应用于 HTTP 分块下载或断点续传,表示响应返回的 body 数据并不是资源的全部,而 是其中的一部分,也是服务器处理成功的状态 

3xx (5种)

301 Moved Permanently:永久性重定向,表示请求的资源被分配了新的URL,之后应使用更改的URL;

302 Found:临时性重定向,表示请求的资源被分配了新的URL,希望本次访问使用新的URL;

301与302的区别:前者是永久移动,后者是临时移动(之后可能还会更改URL),301 和 302 都会在响应头里使用字段 Location ,指明后续要跳转的 URL,浏览器会自动 定向新的 URL。 

303 See Other:表示请求的资源被分配了新的URL,应使用GET方法定向获取请求的资源;

302与303的区别:后者明确表示客户端应当采用GET方式获取资源

304 Not Modified:表示客户端发送附带条件(是指采用GET方法的请求报文中包含if-Match、If-Modified-Since、If-None-Match、If-Range、If-Unmodified-Since中任一首部)的请求时,服务器端允许访问资源,但是请求为满足条件的情况下返回改状态码;

307 Temporary Redirect:临时重定向,与303有着相同的含义,307会遵照浏览器标准不会从POST变成GET;(不同浏览器可能会出现不同的情况);

4xx (4种)

400 Bad Request:表示请求报文中存在语法错误;

401 Unauthorized:未经许可,需要通过HTTP认证;

403 Forbidden:服务器拒绝该次访问(访问权限出现问题)

404 Not Found:表示服务器上无法找到请求的资源,除此之外,也可以在服务器拒绝请求但不想给拒绝原因时使用;

499 客户端主动断开链接

5xx (3种)

500 Inter Server Error:表示服务器在执行请求时发生了错误,也有可能是web应用存在的bug或某些临时的错误时;、

502 Bad Gateway :通常是服务器作为网关或代理时返回的错误码,表示服务器自身工作正常,访问后端服务器 发生了错误。 

503 Server Unavailable:表示服务器暂时处于超负载或正在进行停机维护,无法处理请求;

3.http常见字段有哪些?

request headers:

  1. Accept:
    text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
  2. Accept-Encoding:
    gzip, deflate, br
  3. Accept-Language:
    zh-CN,zh;q=0.9,en;q=0.8
  4. Connection:
    keep-alive
  5. Cookie:
    BIDUPSID=F262536C864B5338004750E589EFCF5D; PSTM=1459757096; MCITY=-%3A; 
  6. Host:
    www.baidu.com
  7. Referer:
    https://baike.baidu.com/search/none?word=Mac%E6%88%AA%E5%9B%BE&pn=0&rn=10&enc=utf8
  8. sec-ch-ua:
    " Not A;Brand";v="99", "Chromium";v="90", "Google Chrome";v="90"
  9. sec-ch-ua-mobile:
    ?0
  10. Sec-Fetch-Dest:
    document
  11. Sec-Fetch-Mode:
    navigate
  12. Sec-Fetch-Site:
    cross-site
  13. Sec-Fetch-User:
    ?1
  14. Upgrade-Insecure-Requests:
    1
  15.  User-Agent:
    Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.3

response headers:

  1. Cache-Control:
    private
  2. Connection:
    keep-alive
  3. Content-Encoding:
    gzip
  4. Content-Type:
    text/html;charset=utf-8

4.get与post有啥区别?

Get 方法的含义是请求从服务器获取资源,这个资源可以是静态的文本、⻚面、图片视频等。 

而 POST 方法则是相反操作,它向 URI 指定的资源提交数据,数据就放在报文的 body 里。 

GET 和 POST 方法都是安全和幂等的吗? 

先说明下安全和幂等的概念:在 HTTP 协议里,所谓的「安全」是指请求方法不会「破坏」服务器上的资源。 所谓的「幂等」,意思是多次执行相同的操作,结果都是「相同」的。

那么很明显 GET 方法就是安全且幂等的,因为它是「只读」操作,无论操作多少次,服务器上的数据都是安全 的,且每次的结果都是相同的。 

POST 因为是「新增或提交数据」的操作,会修改服务器上的资源,所以是不安全的,且多次提交数据就会创建多个资源,所以不是幂等的 

5.你知道的 HTTP(1.1) 的优点有哪些,怎么体现的? 

HTTP 最凸出的优点是「简单、灵活和易于扩展、应用广泛和跨平台」。

1. 简单

HTTP 基本的报文格式就是 header + body ,头部信息也是 key-value 简单文本的形式,易于理解,降低了学习 和使用的⻔槛。

2. 灵活和易于扩展 HTTP协议里的各类请求方法、URI/URL、状态码、头字段等每个组成要求都没有被固定死,都允许开发人员自定义和扩充。

同时 HTTP 由于是工作在应用层( OSI 第七层),则它下层可以随意变化。

HTTPS 也就是在 HTTP 与 TCP 层之间增加了 SSL/TLS 安全传输层,HTTP/3 甚至把 TCP 层换成了基于 UDP 的 QUIC。

3. 应用广泛和跨平台
互联网发展至今,HTTP 的应用范围非常的广泛,从台式机的浏览器到手机上的各种 APP,从看新闻、刷贴吧到购物、理财、吃鸡,HTTP 的应用片地开花,同时天然具有跨平台的优越性。 

缺点呢?

HTTP 协议里有优缺点一体的双刃剑,分别是「无状态、明文传输」,同时还有一大缺点「不安全」。

1. 无状态双刃剑

无状态的好处,因为服务器不会去记忆 HTTP 的状态,所以不需要额外的资源来记录状态信息,这能减轻服务器的 负担,能够把更多的 CPU 和内存用来对外提供服务。

无状态的坏处,既然服务器没有记忆能力,它在完成有关联性的操作时会非常麻烦。

例如登录->添加购物⻋->下单->结算->支付,这系列操作都要知道用户的身份才行。但服务器不知道这些请求是有关联的,每次都要问一遍身份信息。

这样每操作一次,都要验证信息,这样的购物体验还能愉快吗?别问,问就是酸爽! 对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术。

Cookie 通过在请求和响应报文中写入 Cookie 信息来控制客户端的状态。 相当于,在客户端第一次请求后,服务器会下发一个装有客户信息的「小贴纸」,后续客户端请求服务器的时候,

带上「小贴纸」,服务器就能认得了了, 

2. 明文传输双刃剑
明文意味着在传输过程中的信息,是可方便阅读的,通过浏览器的 F12 控制台或 Wireshark 抓包都可以直接肉眼查 看,为我们调试工作带了极大的便利性

3. 不安全
HTTP 比较严 的缺点就是不安全:

通信使用明文(不加密),内容可能会被窃听。比如,账号信息容易泄漏,那你号没了。

不验证通信方的身份,因此有可能遭遇伪装。比如,访问假的淘宝、拼多多,那你钱没了。

无法证明报文的完整性,所以有可能已遭篡改。比如,网⻚上植入垃圾广告,视觉污染,眼没了。

HTTP 的安全问题,可以用 HTTPS 的方式解决,也就是通过引入 SSL/TLS 层,使得在安全上达到了极致。 

6.HTTP/1.1 的性能如何?

1. ⻓连接
早期 HTTP/1.0 性能上的一个很大的问题,那就是每发起一个请求,都要新建一次 TCP 连接(三次握手),而且是 串行请求,做了无谓的 TCP 连接建立和断开,增加了通信开销。

 为了解决上述 TCP 连接问题,HTTP/1.1 提出了⻓连接的通信方式,也叫持久连接。这种方式的好处在于减少了 TCP 连接的 复建立和断开所造成的额外开销,减轻了服务器端的负载。

持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。

2. 管道网络传输

HTTP/1.1 采用了⻓连接的方式,这使得管道(pipeline)网络传输成为了可能。

即可在同一个 TCP 连接里面,客户端可以发起多个请求,只要第一个请求发出去了,不必等其回来,就可以发第 二个请求出去,可以减少整体的响应时间。

举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送 A 请求,然后等待服务器做 出回应,收到后再发出 B 请求。管道机制则是允许浏览器同时发出 A 请求和 B 请求。

但是服务器还是按照顺序,先回应 A 请求,完成后再回应 B 请求。要是前面的回应特别慢,后面就会有许多请求 排队等着。这称为「队头堵塞」

 3.队头阻塞

「请求 - 应答」的模式加剧了 HTTP 的性能问题。

因为当顺序发送的请求序列中的一个请求因为某种原因被阻塞时,在后面排队的所有请求也一同被阻塞了,会招致 客户端一直请求不到数据,这也就是「队头阻塞」。好比上班的路上塞⻋。

 

7.现代浏览器在与服务器建立了一个 TCP 连接后是否会在一个 HTTP 请求完成后断开?什么情况下会断开?

有上面的知识我们可以知道,在http1.0每次tcp链接都会断开,在http1.1 增加了长链接,HTTP/1.1 就把 Connection 头写进标准,并且默认开启持久连接,除非请求中写明 Connection: close

那么浏览器和服务器之间是会维持一段时间的 TCP 连接,不会一个请求结束就断掉。默认情况下建立 TCP 连接不会断开,只有在请求报头中声明 Connection: close 才会在请求完成后关闭连接。

8.一个 TCP 连接可以对应几个 HTTP 请求?

如果维持连接,一个 TCP 连接是可以发送多个 HTTP 请求的。

9.一个 TCP 连接中 HTTP 请求发送可以一起发送么(比如一起发三个请求,再三个响应一起接收)?

 一个 TCP 连接中 HTTP 请求发送可以一起发送么(比如一起发三个请求,再三个响应一起接收)?

HTTP/1.1 存在一个问题,单个 TCP 连接在同一时刻只能处理一个请求,意思是说:两个请求的生命周期不能重叠,任意两个 HTTP 请求从开始到结束的时间在同一个 TCP 连接里不能重叠。

虽然 HTTP/1.1 规范中规定了 Pipelining 来试图解决这个问题,但是这个功能在浏览器中默认是关闭的。

先来看一下 Pipelining 是什么,RFC 2616 中规定了:

至于标准为什么这么设定,我们可以大概推测一个原因:由于 HTTP/1.1 是个文本协议,同时返回的内容也并不能区分对应于哪个发送的请求,所以顺序必须维持一致。比如你向服务器发送了两个请求 GET/query?q=A 和 GET/query?q=B,服务器返回了两个结果,浏览器是没有办法根据响应结果来判断响应对应于哪一个请求的。

Pipelining 这种设想看起来比较美好,但是在实践中会出现许多问题:

  • 一些代理服务器不能正确的处理 HTTP Pipelining。

  • 正确的流水线实现是复杂的。

  • Head-of-line Blocking 连接头阻塞:在建立起一个 TCP 连接之后,假设客户端在这个连接连续向服务器发送了几个请求。按照标准,服务器应该按照收到请求的顺序返回结果,假设服务器在处理首个请求时花费了大量时间,那么后面所有的请求都需要等着首个请求结束才能响应。

所以现代浏览器默认是不开启 HTTP Pipelining 的。

但是,HTTP2 提供了 Multiplexing 多路传输特性,可以在一个 TCP 连接中同时完成多个 HTTP 请求。至于 Multiplexing 具体怎么实现的就是另一个问题了。

所以这个问题也有了答案:在 HTTP/1.1 存在 Pipelining 技术可以完成这个多个请求同时发送,但是由于浏览器默认关闭,所以可以认为这是不可行的。在 HTTP2 中由于 Multiplexing 特点的存在,多个 HTTP 请求可以在同一个 TCP 连接中并行进行。

那么在 HTTP/1.1 时代,浏览器是如何提高页面加载效率的呢?主要有下面两点:

  1. 维持和服务器已经建立的 TCP 连接,在同一连接上顺序处理多个请求。

  2. 和服务器建立多个 TCP 连接。

10.为什么有的时候刷新页面不需要重新建立 SSL 连接?

TCP 连接有的时候会被浏览器和服务端维持一段时间。TCP 不需要重新建立,SSL 自然也会用之前的。

11.浏览器对同一 Host 建立 TCP 连接到数量有没有限制?

浏览器对同一 Host 建立 TCP 连接到数量有没有限制?

假设我们还处在 HTTP/1.1 时代,那个时候没有多路传输,当浏览器拿到一个有几十张图片的网页该怎么办呢?肯定不能只开一个 TCP 连接顺序下载,那样用户肯定等的很难受,但是如果每个图片都开一个 TCP 连接发 HTTP 请求,那电脑或者服务器都可能受不了,要是有 1000 张图片的话总不能开 1000 个TCP 连接吧,你的电脑同意 NAT 也不一定会同意。

所以答案是:有。Chrome 最多允许对同一个 Host 建立六个 TCP 连接。不同的浏览器有一些区别。

https://developers.google.com/web/tools/chrome-devtools/network/issues#queued-or-stalled-requestsdevelopers.google.com

那么回到最开始的问题,收到的 HTML 如果包含几十个图片标签,这些图片是以什么方式、什么顺序、建立了多少连接、使用什么协议被下载下来的呢?

如果图片都是 HTTPS 连接并且在同一个域名下,那么浏览器在 SSL 握手之后会和服务器商量能不能用 HTTP2,如果能的话就使用 Multiplexing 功能在这个连接上进行多路传输。不过也未必会所有挂在这个域名的资源都会使用一个 TCP 连接去获取,但是可以确定的是 Multiplexing 很可能会被用到。

如果发现用不了 HTTP2 呢?或者用不了 HTTPS(现实中的 HTTP2 都是在 HTTPS 上实现的,所以也就是只能使用 HTTP/1.1)。那浏览器就会在一个 HOST 上建立多个 TCP 连接,连接数量的最大限制取决于浏览器设置,这些连接会在空闲的时候被浏览器用来发送新的请求,如果所有的连接都正在发送请求呢?那其他的请求就只能等等了。

12.http与https有哪些区别?

  • HTTP 连接建立相对简单, TCP 三次握手之后便可进行 HTTP 的报文传输。而 HTTPS 在 TCP 三次握手之 后,还需进行 SSL/TLS 的握手过程,才可进入加密报文传输。

  • HTTP 的端口号是 80,HTTPS 的端口号是 443。

  • HTTPS 协议需要向 CA(证书权威机构)申请数字证书,来保证服务器的身份是可信的。

  • HTTP 是超文本传输协议,信息是明文传输,存在安全⻛险的问题。HTTPS 则解决 HTTP 不安全的缺陷,在 TCP 和 HTTP 网络层之间加入了 SSL/TLS 安全协议,使得报文能够加密传输

13.HTTPS 解决了 HTTP 的哪些问题?

HTTP 由于是明文传输,所以安全上存在以下三个⻛险:

窃听⻛险,比如通信链路上可以获取通信内容,用户号容易没。

篡改⻛险,比如强制植入垃圾广告,视觉污染,用户眼容易瞎。

冒充⻛险,比如冒充淘宝网站,用户钱容易没。

 HTTPS 在 HTTP 与 TCP 层之间加入了 SSL/TLS 协议,可以很好的解决了上述的⻛险:

 信息加密:交互信息无法被窃取,但你的号会因为「自身忘记」账号而没。

校验机制:无法篡改通信内容,篡改了就不能正常显示,但百度「竞价排名」依然可以搜索垃圾广告。

身份证书:证明淘宝是真的淘宝网,但你的钱还是会因为「剁手」而没。

https是如何解决上述风险的?

混合加密的方式实现信息的机密性,解决了窃听的⻛险。
摘要算法的方式来实现完整性,它能够为数据生成独一无二的「指纹」,指纹用于校验数据的完整性,解决了篡改的⻛险。
将服务器公钥放入到数字证书中,解决了冒充的⻛险。
1. 混合加密 通过混合加密的方式可以保证信息的机密性,解决了窃听的⻛险。

 

HTTPS 采用的是对称加密和非对称加密结合的「混合加密」方式:

在通信建立前采用非对称加密的方式交换「会话秘钥」,后续就不再使用非对称加密。

在通信过程中全部使用对称加密的「会话秘钥」的方式加密明文数据。 

采用「混合加密」的方式的原因:

对称加密只使用一个密钥,运算速度快,密钥必须保密,无法做到安全的密钥交换。 非对称加密使用两个密钥:公钥和私钥,公钥可以任意分发而私钥保密,解决了密钥交换问题但速度慢。 

2. 摘要算法 

摘要算法用来实现完整性,能够为数据生成独一无二的「指纹」,用于校验数据的完整性,解决了篡改的⻛险。 

 

客户端在发送明文之前会通过摘要算法算出明文的「指纹」,发送的时候把「指纹 + 明文」一同加密成密文后,发 送给服务器,服务器解密后,用相同的摘要算法算出发送过来的明文,

通过比较客户端携带的「指纹」和当前算出 的「指纹」做比较,若「指纹」相同,说明数据是完整的。 

3. 数字证书

客户端先向服务器端索要公钥,然后用公钥加密信息,服务器收到密文后,用自己的私钥解密。 这就存在些问题,如何保证公钥不被篡改和信任度?

所以这里就需要借助第三方权威机构 CA (数字证书认证机构),将服务器公钥放在数字证书(由数字证书认证 机构颁发)中,只要证书是可信的,公钥就是可信的。

14.https是如何建立连接的?期间交换了什么?

SSL/TLS 协议基本流程:

  客户端向服务器索要并验证服务器的公钥。
  双方协商生产「会话秘钥」。
  双方采用「会话秘钥」进行加密通信。

前两步也就是 SSL/TLS 的建立过程,也就是握手阶段。 

SSL/TLS 协议建立的详细流程:
1. ClientHello
首先,由客户端向服务器发起加密通信请求,也就是 ClientHello 请求。 在这一步,客户端主要向服务器发送以下信息:
(1)客户端支持的 SSL/TLS 协议版本,如 TLS 1.2 版本。
(2)客户端生产的随机数( Client Random ),后面用于生产「会话秘钥」。

(3)客户端支持的密码套件列表,如 RSA 加密算法。
2. SeverHello
服务器收到客户端请求后,向客户端发出响应,也就是 SeverHello 。服务器回应的内容有如下内容:

(1)确认 SSL/ TLS 协议版本,如果浏览器不支持,则关闭加密通信。
(2)服务器生产的随机数( Server Random ),后面用于生产「会话秘钥」。

(3)确认的密码套件列表,如 RSA 加密算法。
(4)服务器的数字证书。
3.客户端回应
客户端收到服务器的回应之后,首先通过浏览器或者操作系统中的 CA 公钥,确认服务器的数字证书的真实性。 如果证书没有问题,客户端会从数字证书中取出服务器的公钥,然后使用它加密报文,

向服务器发送如下信息:

(1)一个随机数( pre-master key )。该随机数会被服务器公钥加密。

(2)加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。

(3)客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘 要,用来供服务端校验。

上面第一项的随机数是整个握手阶段的第三个随机数,这样服务器和客户端就同时有三个随机数,接着就用双方协 商的加密算法,各自生成本次通信的「会话秘钥」。

4. 服务器的最后回应
服务器收到客户端的第三个随机数( pre-master key )之后,通过协商的加密算法,计算出本次通信的「会话秘钥」。然后,向客户端发生最后的信息:

(1)加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。会话秘钥的产生是客户端随机数+服务端随机数+pre-master算出会话秘钥

(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘 要,用来供客户端校验。

至此,整个 SSL/TLS 的握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的 HTTP 协议,只不过用「会话秘钥」加密内容。 

15.说说 HTTP/1.1 相比 HTTP/1.0 提高了什么性能? 

HTTP/1.1 相比 HTTP/1.0 性能上的改进:
使用 TCP ⻓连接的方式改善了 HTTP/1.0 短连接造成的性能开销。

支持管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以 减少整体的响应时间。

但 HTTP/1.1 还是有性能瓶颈:

请求 / 响应头部(Header)未经压缩就发送,首部信息越多延迟越大。只能压缩 Body 的部分;

发送冗⻓的首部。每次互相发送相同的首部造成的浪费较多;

服务器是按请求的顺序响应的,如果服务器响应慢,会招致客户端一直请求不到数据,也就是队头阻塞;

没有请求优先级控制;

请求只能从客户端开始,服务器只能被动响应。

16.那上面的 HTTP/1.1 的性能瓶颈,HTTP/2 做了什么优化? 

那 HTTP/2 相比 HTTP/1.1 性能上的改进:
1. 头部压缩 

HTTP/2 会压缩头(Header)如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重 复的部分。

这就是所谓的 HPACK 算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索 引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。 

2. 二进制格式
HTTP/2 不再像 HTTP/1.1 里的纯文本形式的报文,而是全面采用了二进制格式,头信息和数据体都是二进制,并

且统称为帧(frame):头信息帧和数据帧。 

3. 数据流
HTTP/2 的数据包不是按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。

每个请求或回应的所有数据包,称为一个数据流( Stream )。每个数据流都标记着一个独一无二的编号,其中规 定客户端发出的数据流编号为奇数, 服务器发出的数据流编号为偶数

客户端还可以指定数据流的优先级。优先级高的请求,服务器就先响应该请求。 

4. 多路复用
HTTP/2 是可以在一个连接中并发多个请求或回应,而不用按照顺序一一对应。

移除了 HTTP/1.1 中的串行请求,不需要排队等待,也就不会再出现「队头阻塞」问题,降低了延迟,大幅度提高 了连接的利用率。

举例来说,在一个 TCP 连接里,服务器收到了客户端 A 和 B 的两个请求,如果发现 A 处理过程非常耗时,于是就 回应 A 请求已经处理好的部分,接着回应 B 请求,完成后,再回应 A 请求剩下的部分。 

5. 服务器推送
HTTP/2 还在一定程度上改善了传统的「请求 - 应答」工作模式,服务不再是被动地响应,也可以主动向客户端发

送消息。
举例来说,在浏览器刚请求 HTML 的时候,就提前把可能会用到的 JS、CSS 文件等静态资源主动发给客户端,减

少延时的等待,也就是服务器推送(Server Push,也叫 Cache Push)。 

17.HTTP/2 有哪些缺陷?HTTP/3 做了哪些优化? 

HTTP/2 主要的问题在于,多个 HTTP 请求在复用一个 TCP 连接,下层的 TCP 协议是不知道有多少个 HTTP 请求 的。所以一旦发生了丢包现象,就会触发 TCP 的 传机制,这样在一个 TCP 连接中的所有的 HTTP 请求都必须等 待这个丢了的包被重传回来。

HTTP/1.1 中的管道( pipeline)传输中如果有一个请求阻塞了,那么队列后请求也统统被阻塞住了 HTTP/2 多个请求复用一个TCP连接,一旦发生丢包,就会阻塞住所有的 HTTP 请求。

这都是基于 TCP 传输层的问题,所以 HTTP/3 把 HTTP 下层的 TCP 协议改成了 UDP! 

UDP 发生是不管顺序,也不管丢包的,所以不会出现 HTTP/1.1 的队头阻塞 和 HTTP/2 的一个丢包全部 传问 题。

大家都知道 UDP 是不可靠传输的,但基于 UDP 的 QUIC 协议 可以实现类似 TCP 的可靠性传输。
QUIC 有自己的一套机制可以保证传输的可靠性的。当某个流发生丢包时,只会阻塞这个流,其他流不会受到影响。

TLS3 升级成了最新的 1.3 版本,头部压缩算法也升级成了 QPack 。

HTTPS 要建立一个连接,要花费 6 次交互,先是建立三次握手,然后是 TLS/1.3 的三次握手。QUIC 直接 把以往的 TCP 和 TLS/1.3 的 6 次交互合并成了 3 次,减少了交互次数。

所以, QUIC 是一个在 UDP 之上的伪 TCP + TLS + HTTP/2 的多路复用的协议。
QUIC 是新协议,对于很多网络设备,根本不知道什么是 QUIC,只会当做 UDP,这样会出现新的问题。所以

HTTP/3 现在普及的进度非常的缓慢,不知道未来 UDP 是否能够逆袭 TCP。 

 
参考资料:小林coding图解网络
https://www.cnblogs.com/williamjie/p/11075565.html
posted @ 2021-05-04 19:08  枯木逢春  阅读(557)  评论(1编辑  收藏  举报