摘要: """ Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou More 阅读全文
posted @ 2021-08-26 18:55 kuanleung 阅读(20) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 numpy """ import tensorflow as tf import numpy as np tf.set_random_seed(1) np.random.seed(1) # fake data x = np.linspa 阅读全文
posted @ 2021-08-26 18:53 kuanleung 阅读(29) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) 阅读全文
posted @ 2021-08-26 18:51 kuanleung 阅读(12) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) 阅读全文
posted @ 2021-08-26 18:50 kuanleung 阅读(11) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) 阅读全文
posted @ 2021-08-26 18:49 kuanleung 阅读(16) 评论(0) 推荐(0)
摘要: #tensorflow2代码 #设置优化器 x_data = np.random.rand(100).astype(np.float32) b_data = tf.random.normal([1],mean=1,stddev=0.5) print(tf.reduce_mean(b_data)) y 阅读全文
posted @ 2021-08-26 18:48 kuanleung 阅读(21) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 matplotlib """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # fake data x = np.linspace( 阅读全文
posted @ 2021-08-26 18:47 kuanleung 阅读(16) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 """ import tensorflow as tf var = tf.Variable(0) # our first variable in the "global_variable" set add_operation = tf. 阅读全文
posted @ 2021-08-26 18:46 kuanleung 阅读(9) 评论(0) 推荐(0)
摘要: Dependencies: tensorflow: 1.1.0 """ import tensorflow as tf x1 = tf.placeholder(dtype=tf.float32, shape=None) y1 = tf.placeholder(dtype=tf.float32, sh 阅读全文
posted @ 2021-08-26 18:44 kuanleung 阅读(12) 评论(0) 推荐(0)
摘要: session """ Dependencies: tensorflow: 1.1.0 """ import tensorflow as tf m1 = tf.constant([[2, 2]]) m2 = tf.constant([[3], [3]]) dot_operation = tf.mat 阅读全文
posted @ 2021-08-26 18:43 kuanleung 阅读(10) 评论(0) 推荐(0)