摘要:
""" Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou More 阅读全文
posted @ 2021-08-26 18:55
kuanleung
阅读(20)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 numpy """ import tensorflow as tf import numpy as np tf.set_random_seed(1) np.random.seed(1) # fake data x = np.linspa 阅读全文
posted @ 2021-08-26 18:53
kuanleung
阅读(29)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) 阅读全文
posted @ 2021-08-26 18:51
kuanleung
阅读(12)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) 阅读全文
posted @ 2021-08-26 18:50
kuanleung
阅读(11)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 matplotlib numpy """ import tensorflow as tf import matplotlib.pyplot as plt import numpy as np tf.set_random_seed(1) 阅读全文
posted @ 2021-08-26 18:49
kuanleung
阅读(16)
评论(0)
推荐(0)
摘要:
#tensorflow2代码 #设置优化器 x_data = np.random.rand(100).astype(np.float32) b_data = tf.random.normal([1],mean=1,stddev=0.5) print(tf.reduce_mean(b_data)) y 阅读全文
posted @ 2021-08-26 18:48
kuanleung
阅读(21)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 matplotlib """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # fake data x = np.linspace( 阅读全文
posted @ 2021-08-26 18:47
kuanleung
阅读(16)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 """ import tensorflow as tf var = tf.Variable(0) # our first variable in the "global_variable" set add_operation = tf. 阅读全文
posted @ 2021-08-26 18:46
kuanleung
阅读(9)
评论(0)
推荐(0)
摘要:
Dependencies: tensorflow: 1.1.0 """ import tensorflow as tf x1 = tf.placeholder(dtype=tf.float32, shape=None) y1 = tf.placeholder(dtype=tf.float32, sh 阅读全文
posted @ 2021-08-26 18:44
kuanleung
阅读(12)
评论(0)
推荐(0)
摘要:
session """ Dependencies: tensorflow: 1.1.0 """ import tensorflow as tf m1 = tf.constant([[2, 2]]) m2 = tf.constant([[3], [3]]) dot_operation = tf.mat 阅读全文
posted @ 2021-08-26 18:43
kuanleung
阅读(10)
评论(0)
推荐(0)

浙公网安备 33010602011771号