Dependencies:
tensorflow:1.1.0
numpy
"""
import tensorflow as tf
import numpy as np
tf.set_random_seed(1)
np.random.seed(1)# fake data
x = np.linspace(-1,1,100)[:, np.newaxis]# shape (100, 1)
noise = np.random.normal(0,0.1, size=x.shape)
y = np.power(x,2)+ noise # shape (100, 1) + some noisewith tf.variable_scope('Inputs'):
tf_x = tf.placeholder(tf.float32, x.shape, name='x')
tf_y = tf.placeholder(tf.float32, y.shape, name='y')with tf.variable_scope('Net'):
l1 = tf.layers.dense(tf_x,10, tf.nn.relu, name='hidden_layer')
output = tf.layers.dense(l1,1, name='output_layer')# add to histogram summary
tf.summary.histogram('h_out', l1)
tf.summary.histogram('pred', output)
loss = tf.losses.mean_squared_error(tf_y, output, scope='loss')
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)
tf.summary.scalar('loss', loss)# add loss to scalar summary
sess = tf.Session()
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter('./log', sess.graph)# write to file
merge_op = tf.summary.merge_all()# operation to merge all summaryfor step inrange(100):# train and net output
_, result = sess.run([train_op, merge_op],{tf_x: x, tf_y: y})
writer.add_summary(result, step)# Lastly, in your terminal or CMD, type this :# $ tensorboard --logdir path/to/log# open you google chrome, type the link shown on your terminal or CMD. (something like this: http://localhost:6006)