随笔分类 - 统计学习李航
摘要:逻辑回归分类 1,概念 2,算法流程 3,多分类逻辑回归 4,逻辑回归总结 优点: 1)预测结果是界于0和1之间的概率; 2)可以适用于连续性和类别性自变量; 3)容易使用和解释; 缺点: 1)对模型中自变量多重共线性较为敏感,例如两个高度相关自变量同时放入模型,可能导致较弱的一个自变量回归符号不符
        阅读全文
                
摘要:决策树分类 1,概念 2,决策树算法 2.1,特征选择: 熵:值越大,不确定性因素越大;条件熵:即已知x存在的情况下求y的不确定性(越小越好);信息增益(互信息):熵减去条件熵(度量了X在知道Y以后不确定性减少程度),越大越好; 2.2,决策树生成算法 1,ID3算法 2,c4.5算法 信息增益率等
        阅读全文
                
摘要:朴素贝叶斯分类 1,基本概念 2,算法流程 关键点:理解先验概率,条件概率,最大后验概率,下面是以极大似然估计的 3,算法改进(贝叶斯估计) 上述用极大似然估计可能会出现所要估计的概率值为0的情况,改进方法: 先验概率贝叶斯估计:K表示类别数,λ为参数:0时为极大似然估计;1时为拉普拉斯平滑 条件概
        阅读全文
                
摘要:KNN (一)KNN概念: K近邻算法是一种回归和分类算法,这主要讨论其分类概念: K近邻模型三要素: 1,距离: 2,K值的选择: K值选择过小:模型过复杂,近似误差减小,估计误差上升,出现过拟合 K值选择过大:模型过于简单,预测能力弱 K值的选择:可以通过交叉验证来确定,k一般取一个较小的值 3
        阅读全文
                
摘要:感知机 (一)概念 1,定义: (二),学习策略 1,线性可分 :存在一个超平面将正实例和负实例划分开来,反之不可分 2,学习策略:寻找极小损失函数,通过计算误分点到超平面的距离 3,学习算法 即求解损失函数最优化的算法,借用随机梯度下降法 3.1 原始形式 学习率也叫步长(0,1] 例题: pyt
        阅读全文
                
摘要:统计学习方法概论: (一),统计学习 1,统计学习的特点 2,统计学习的对象 3,统计学习的目的 4,统计学习的方法(重点:模型的集合,策略(模型的选择),算法(模型的实现调优)) (二),监督学习重要概念 1,输入空间,特征向量空间,输出空间,预测问题分为(回归问题(输出为连续即可),分类问题,标
        阅读全文
                
 
                    
                     
                    
                 
                    
                
 
         浙公网安备 33010602011771号
浙公网安备 33010602011771号