信号与系统实验教程知识要点
1.两个时限信号的卷积:
x(t),t0<=t<=t1和h(t),t2<=t<=t3,用y(t)来表示他们的卷积结果
y(t)的时间范围是t0+t2<=t<=t1+t3;用y=dt*conv(x,h)求得卷积。
dt=0.01;t=-1:dt:2;
x=u(t)-u(t-1);
h=t.*(u(t)-u(t-1));
y=dt*conv(x,h);
subplot(221),plot(t,x),grid on
title('x(t)'),axis([-1,2,-0.2,1.2]),xlabel('t')
subplot(222),plot(t,h),grid on
title('h(t)'),axis([-1,2,-0.2,1.2]),xlabel('t')
subplot(212),t=-2:dt:4;
plot(t,y),grid on
title('x(t)与h(t)卷积'),axis([-2,4,-0.1,0.6]),xlabel('t')
2.离散卷积的计算:
c=conv(a,b),a、b为待卷积的两序列的向量表示,c是卷积结果。
x=[1,2,3,4];k1=[0 1 2 3]; y=[1,1,1,1,1];k2=[0 1 2 3 4]; z=conv(x,y); N=length(z); subplot(311),stem(k1,x),axis([-1,5,-0.2,5]) subplot(312),stem(k2,y),axis([-1,5,0,1.5]) subplot(313),stem(0:N-1,z),axis([-1,8,0,11])
3.连续LTI系统的零状态响应、冲激响应、阶跃响应的求解
lsim(b,a,x,t)
impulse(b,a,t)
step(b,a,t)
t=0:0.01:5;a=[1 2 100];b=10; x=sin(2*pi*t); subplot(311),lsim(b,a,x,t) subplot(312),impulse(b,a,t) subplot(313),step(b,a,t)
4.离散LTI系统的零状态响应、单位响应的求解
filter(b,a,f)
impz(b,a,k)
a=[1 -0.25 0.5];b=[1 1]; t=0:20;f=(1/2).^t; y=filter(b,a,f) h=impz(b,a,t) subplot(311),stem(t,f),title('输入序列') subplot(312),stem(t,y),title('响应序列') subplot(313),stem(t,h),title('单位响应')
5.傅里叶级数系数的matlab计算:
for k=-N:N
ak(N+1+k)=(1/T)*x1*exp(-j*k*w0*t')*dt;
end
%Program3_1 T=input('T='); dt=0.001; t=-T/2:dt:T/2;w0=2*pi/T; x1=u(t+1/2)-u(t-1/2);N=30; for k=-N:N ak(N+1+k)=(1/T)*x1*exp(-j*k*w0*t')*dt; end k=-N:N;stem(k,real(ak)) title('周期矩形信号的频谱')
6.系统频率响应的matlab计算:
[H,w]=freqs(b,a,w) b,a分别为连续时间lTI系统的微分方程的右边和左边的系数向量,w是频率变量范围
b=[1];a=[0.08 0.4 1]; [H,w]=freqs(b,a,100); Hm=abs(H);phi=angle(H); subplot(211),plot(w,Hm),grid on subplot(212),plot(w,phi),grid on
7.信号的抽样:
范围不变,步长取大,用stem()代替plot()绘制
t=0:0.01:10;Ts=1/4; k=0:Ts:10; x=cos(0.5*pi*t); xk=cos(0.5*pi*k); subplot(211),plot(t,x),box off subplot(212),stem(k,xk),box off
9.绘制laplace变换的曲面图:
mesh(A,B,abs(Fs)) [A ,B]=meshgrid(a,b)是绘图区域的矩阵,A是实轴的向量,B是虚轴的向量
s=A+j*B
%Program8_1 a=-0:0.1:5;b=-20:0.1:20; [A,B]=meshgrid(a,b); s=A+i*B; Fs=(1-exp(-2*(s+eps)))./(s+eps); subplot(211) mesh(A,B,abs(Fs)) view(-60,20) axis([-0,5,-20,20,0,2]) title('拉普拉斯变换(S域像函数)') w=-20:0.1:20; Fw=(2*sin(w+eps).*exp(i*(w+eps)))./(w+eps); subplot(212);plot(w,abs(Fw)) title('傅立叶变换(幅度谱)'),xlabel('频率w')
10.系统函数的零极点分布图:
function splane(a,b) p=roots(a); q=roots(b); p=p',q=q'; x=max(abs([p q])); x=x+1; y=x; hold on plot([-x x],[0 0],':') plot([0 0],[-y y],':') plot(real(p),imag(p),'rx','MarkerSize',10) plot(real(q),imag(q),'ro','MarkerSize',10) title('连续系统零点极点图') text(0.2,x-0.2,'虚轴') text(y-0.2,0.2,'实轴') axis([-x x-y y]) axis('square')
11.拉普拉斯逆变换的计算:
[r,p,k]=residue(b,a)
>> b=[1 0 0 0]; >> a=[1 3 2]; >> [r,p,k]=residue(b,a)

浙公网安备 33010602011771号