LALP 3rd Continuous Assessment
Q1
Suppose it makes \(x\) product A and \(y\) product B.
Then the LP problem is:
\[\text{Maximize}\quad 2.4 x+2.6 y, \\
\left\{\
\begin{array}
5 x+4 y\leq 160\\
2 x+3 y\leq 85\\
x+2 y\leq 50
\end{array}
\right.
\]
by drawing a graph, we can earn \(x^* = [20,15]\) and the objective value is \(87\).
Q2
Suppose it makes \(x\) chocolate cake and \(y\) cheese cake.
Then the LP problem is
\[\text{Maximize}\quad 1.2 x + 1.4 y, \\
\left\{\
\begin{array}
5 x+4 y\leq 160\\
2 x+3 y\leq 85\\
x+2 y\leq 50
\end{array}
\right.
\]
by drawing a graph, we can earn \(x^* = [20,15]\) and the objective value is \(45\).
Q3
If the primal problem is given by (canonical form)
\[\begin{array}{cl}
(L P) \quad \text { Minimize } & c^{T} x \\
\text { s.t. } & A x \geq b, \quad x \geq 0
\end{array}
\]
then its dual problem is
\[\begin{array}{cl}
(D P) \quad \text { Maximize } & b^{T} y \\
\text { s.t. } \quad & A^{T} y \leq c, y \geq 0
\end{array}
\]
Hence the Dual of \(P\) is
\[\text { Maximise } 12 y_{1}+9 y_{2}+6 y_{3} \\
\begin{align}
\text { subject to } 5 y_{1}+4 y_{2}+3 y_{3} &\leq 7,\\
4 y_{1}+7 y_{2}+2 y_{3} &\leq 10,\\
y_{1} \geq 0,y_{2} \geq 0, y_{3} &\geq 0 \text {. }
\end{align}
\]
Q4
If the primal problem is given by
\[\begin{array}{cl}
(L P) \quad \text { Minimize } & c^{T} x \\
\text { s.t. } & A x=b, \quad x \geq 0
\end{array}
\]
then its dual problem is defined by
\[\begin{array}{cl}
(D P) \quad \text { Maximize } & b^{T} y \\
\text { s.t. } \quad & A^{T} y \leq c
\end{array}
\]
where \(y \in R^{m}\).
Hence the Dual of \(P\) is
\[\text { Maximise } 12 y_{1}+9 y_{2}+6 y_{3} \\
\begin{align}
\text { subject to } 5 y_{1}+4 y_{2}+3 y_{3} &\leq a,\\
4 y_{1}+7 y_{2}+2 y_{3} &\leq 10, \\
y_{1} \in \mathbb{R}, y_{2} \in \mathbb{R}, y_{3} &\in \mathbb{R}
\end{align}
\]
Q5
Consider the following linear programming problem
\[\begin{align}
(P): \text { Minimise } \qquad6 x_{1}+15 x_{2}+12 x_{3} \\
\text { subject to }\qquad \ \ \ \
x_{1}+2 x_{2}+4 x_{3} &\geq 3 \\
3 x_{1}+5 x_{2}+3 x_{3} &\geq 4 \\
x_{1}, x_{2}, x_{3} &\geq 0
\end{align}
\]
Given that \(\left(2, \frac{4}{3}\right)\) is an optimal solution to the dual problem.
Sol.
Introduce slack variables \(x_4\) and $ x_5 $ and transform the problem to the standard form:
\[\begin{align}
(P): \text { Minimise } \qquad6 x_{1}+15 x_{2}+12 x_{3} \\
\text { subject to }\qquad \ \ \ \ \
x_{1}+2 x_{2}+4 x_{3}- x_4 &=3 \\
3 x_{1}+5 x_{2}+3 x_{3} - x_5&= 4 \\
x_{1}, x_{2}, x_{3} &\geq 0
\end{align}
\]
The optimality conditions for this LP are given as follows:
\[\begin{align}
x_{1}+2 x_{2}+4 x_{3}- x_4 &=3 \\
3 x_{1}+5 x_{2}+3 x_{3} - x_5&= 4 \\
x_{1}, x_{2}, x_{3},x_4,x_5 &\geq 0\\
y_1+3y_2 &\leq 6\\
2y_1+5y_2&\leq 15\\
4y_1+3y_2&\leq 12\\
y_1,y_2&\geq 0 \\
x_{1}+15 x_{2}+12 x_{3} &= 3y_1+4y_2
\end{align}
\]
Given that \(\left(2, \frac{4}{3}\right)\) is an optimal solution to the dual problem, quick check:
\[y_1+3y_2 = 6\\
2y_1+5y_2< 15 \\
4y_1+3y_2= 12\\
\]
Since the first constraint in the dual problem is an inequality, by the complementary slackness conditions, the first variable in the primal problem is zero, that is \(x^*_2 = 0\). Substituting this to the primal constraints, we obtain
\[\begin{align}
\text { Minimise } \qquad6 x_{1}+12 x_{3} \\
x_{1}+4 x_{3} &\geq 3 \\
3 x_{1}+3 x_{3} &\geq 4 \\
x_{1}, x_{3} &\geq 0\\
\end{align}
\]
By drawing a graph, we can quickly obtain the reduced LP problem above, where the optimal solution is
\[x_1 = \frac{7}{9}\quad x_3 = \frac{5}{9}
\]
Hence the minimun value of the primal problem is \(\frac{34}{3}\), and the optimal solution is \(\left[ \frac{7}{9},0, \frac{5}{9}\right]\)
Q6
Consider the following linear programming problem
\[\begin{array}{cl}
\text { Minimise } & 2 x_{1}+5 x_{2}+4 x_{3} \\
\text { subject to } & x_{1}+2 x_{2}+4 x_{3} \geq 3 \\
& 3 x_{1}+5 x_{2}+3 x_{3} \geq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
\]
Given that \(\left(\frac{2}{3}, \frac{4}{9}\right)\) is an optimal solution to the dual problem.
Sol.
Introduce slack variables \(x_4\) and $ x_5 $ and transform the problem to the standard form:
\[\begin{align}
(P): \text { Minimise } \qquad2 x_{1}+5 x_{2}+4 x_{3} \\
\text { subject to }\qquad \ \ \ \ \
x_{1}+2 x_{2}+4 x_{3}- x_4 &=3 \\
3 x_{1}+5 x_{2}+3 x_{3} - x_5&= 4 \\
x_{1}, x_{2}, x_{3} &\geq 0
\end{align}
\]
The optimality conditions for this LP are given as follows:
\[\begin{align}
x_{1}+2 x_{2}+4 x_{3}- x_4 &=3 \\
3 x_{1}+5 x_{2}+3 x_{3} - x_5&= 4 \\
x_{1}, x_{2}, x_{3},x_4,x_5 &\geq 0\\
y_1+3y_2 &\leq 2\\
2y_1+5y_2&\leq 5\\
4y_1+3y_2&\leq 4\\
y_1,y_2&\geq 0 \\
2x_{1}+ 5x_{2}+4 x_{3} &= 3y_1+4y_2
\end{align}
\]
Given that \(\left(\frac{2}{3}, \frac{4}{9}\right)\) is an optimal solution to the dual problem, quick check:
\[y_1+3y_2 = 2\\
2y_1+5y_2< 5 \\
4y_1+3y_2= 4\\
\]
Since the first constraint in the dual problem is an inequality, by the complementary slackness conditions, the first variable in the primal problem is zero, that is \(x^*_2 = 0\). Substituting this to the primal constraints, we obtain
\[\begin{align}
\text { Minimise } \qquad2 x_{1}+ 4x_{3} \\
x_{1}+4 x_{3} &\geq 3 \\
3 x_{1}+3 x_{3} &\geq 4 \\
x_{1}, x_{3} &\geq 0\\
\end{align}
\]
By drawing a graph, we can quickly obtain the reduced LP problem above, where the optimal solution is
\[x_1 = \frac{7}{9}\quad x_3 = \frac{5}{9}
\]
Hence the minimun value of the primal problem is \(\frac{34}{9}\), and the optimal solution is \(\left[ \frac{7}{9},0, \frac{5}{9}\right]\)