NLP FROM SCRATCH: TRANSLATION WITH A SEQUENCE TO SEQUENCE NETWORK AND ATTENTION
Author: Sean Robertson
这是NLP从头学习系列的第三篇。之前都是利用自己写的函数与类来处理数据并完成NLP分类与生成任务。本节将学习利用torchtxt来处理。该项目为:教会网络从法语翻译成英语。

这个实现主要根据 sequence to sequence network,其中有两个循环神经网络一起工作,将其中一个序列翻译成另一个序列。一个编码网络将输入编码成向量,一个解码器将向量恢复成新的序列。

为了提升模型性能,使用注意力机制 attention mechanism,使得解码器学着去关注输入序列的特定范围。
推荐阅读:
I assume you have at least installed PyTorch, know Python, and understand Tensors:
- https://pytorch.org/ For installation instructions
- Deep Learning with PyTorch: A 60 Minute Blitz to get started with PyTorch in general
- Learning PyTorch with Examples for a wide and deep overview
- PyTorch for Former Torch Users if you are former Lua Torch user
It would also be useful to know about Sequence to Sequence networks and how they work:
- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
- Sequence to Sequence Learning with Neural Networks
- Neural Machine Translation by Jointly Learning to Align and Translate
- A Neural Conversational Model
You will also find the previous tutorials on NLP From Scratch: Classifying Names with a Character-Level RNN and NLP From Scratch: Generating Names with a Character-Level RNN helpful as those concepts are very similar to the Encoder and Decoder models, respectively.
And for more, read the papers that introduced these topics:
- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
- Sequence to Sequence Learning with Neural Networks
- Neural Machine Translation by Jointly Learning to Align and Translate
- A Neural Conversational Model
需要的库
1 from __future__ import unicode_literals, print_function, division 2 from io import open 3 import unicodedata 4 import string 5 import re 6 import random 7 8 import torch 9 import torch.nn as nn 10 from torch import optim 11 import torch.nn.functional as F 12 13 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
载入数据文件
该项目的数据是一组英文到法文的翻译对。This question on Open Data Stack Exchange pointed me to the open translation site https://tatoeba.org/ which has downloads available at https://tatoeba.org/eng/downloads - and better yet, someone did the extra work of splitting language pairs into individual text files here: https://www.manythings.org/anki/。英语到法语的数据对太大,所以下载到 data/eng-fra.txt。Download the data from here and extract it to the current directory.
类似于character-level RNN中的字母编码,我们将使用独热编码代表语言中的每个word。与语言中可能存在的几十个字符相比,有更多的单词,因此编码向量要大得多。不过,为方便高效,把数据删减到每种语言只使用几千个单词。

需要每个单词的一个独立索引作为输入和输出。为此利用一个帮助函数Lang,有 index (word2index) and index → word (index2word) dictionaries。也有每个词的数目word2count来使用替代稀有单词。
SOS_token = 0 EOS_token = 1 class Lang: def __init__(self, name): self.name = name self.word2index = {} self.word2count = {} self.index2word = {0: "SOS", 1: "EOS"} self.n_words = 2 # Count SOS and EOS def addSentence(self, sentence): for word in sentence.split(' '): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1
编码格式turn Unicode characters to ASCII,将所有字母小写化,修剪大部分符号。
# Turn a Unicode string to plain ASCII, thanks to # https://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase, trim, and remove non-letter characters def normalizeString(s): s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) return s
为读取数据,将文件划分为几行,然后划分每行为数据对,文件全是英文->其他语言,所以如果我们想翻译其他语言->英语。加入reverse标志来倒置。
def readLangs(lang1, lang2, reverse=False): print("Reading lines...") # Read the file and split into lines lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\ read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make Lang instances if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = Lang(lang2) output_lang = Lang(lang1) else: input_lang = Lang(lang1) output_lang = Lang(lang2) return input_lang, output_lang, pairs
因为有大量的样本句子并并想快速训练,将把数据集精简为相对简短的句子。这里的最大长度是10个单词(包括结束标点符号),我们过滤掉翻译成“我是”或“他是”等形式的句子(包括前面替换的撇号)。
MAX_LENGTH = 10 eng_prefixes = ( "i am ", "i m ", "he is", "he s ", "she is", "she s ", "you are", "you re ", "we are", "we re ", "they are", "they re " ) def filterPair(p): return len(p[0].split(' ')) < MAX_LENGTH and \ len(p[1].split(' ')) < MAX_LENGTH and \ p[1].startswith(eng_prefixes) def filterPairs(pairs): return [pair for pair in pairs if filterPair(pair)]
数据处理的全部步骤:
- 读入文本文件并划分为行,然后行划分为数据对
- 规范化文本,根据长度和内容过滤
- 根据数据对中的句子制作词列表
def prepareData(lang1, lang2, reverse=False): input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse) print("Read %s sentence pairs" % len(pairs)) pairs = filterPairs(pairs) print("Trimmed to %s sentence pairs" % len(pairs)) print("Counting words...") for pair in pairs: input_lang.addSentence(pair[0]) output_lang.addSentence(pair[1]) print("Counted words:") print(input_lang.name, input_lang.n_words) print(output_lang.name, output_lang.n_words) return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng', 'fra', True) print(random.choice(pairs))

The Seq2Seq Model
一个循环神经网络或者RNN,在序列上进行操作,并利用输出作为序列步骤中的输入。
A Sequence to Sequence network, or seq2seq network, or Encoder Decoder network,包含了两个RNN:编码器和解码器。编码器读取输入序列,输出一个单一向量。解码器读取向量并输出一个序列。

和但RNN序列预测不同,其中每个输入对应于一个输出,而seq2seq模型对于序列长度和顺序没有要求,对于两种语言间的翻译比较理想。
考虑句子: “Je ne suis pas le chat noir” → “I am not the black cat”.输入序列的大多数单词有一个直接的翻译,但是稍微顺序不同。例如“chat noir” and “black cat”.因为“ne/pas”结构,在输入序列中含有一个单词。很难直接从输入的单词序列中产生正确的译文。
利用seq2seq模型编码可以创建一个单一向量,理想情况下,编码输入序列的“意义”到单一向量(N维句子空间中的一个点)。
编码器
seq2seq的编码器是一个RNN,输出是每个单词的一些值。对于每个输入单词,编码器输出一个向量和一个隐藏态,利用隐藏态作为下一个输入。

class EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size): super(EncoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden): embedded = self.embedding(input).view(1, 1, -1) output = embedded output, hidden = self.gru(output, hidden) return output, hidden def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device)
解码器
解码器是另一个RNN,输入向量输出翻译好的序列。
简单解码器:最简单的seq2seq解码器,仅仅利用编码器的最后输出。最后的输出有时称为context vector,因为从整个序列中编码内容。这个context向量也用作解码器的初始隐藏态。在每一步解码,解码器给定输入和隐藏态。初始的输入为起始串<SOS>,最开始的隐藏态是context vector(也就是编码器的最后的那个隐藏态)。

class DecoderRNN(nn.Module): def __init__(self, hidden_size, output_size): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): output = self.embedding(input).view(1, 1, -1) output = F.relu(output) output, hidden = self.gru(output, hidden) output = self.softmax(self.out(output[0])) return output, hidden def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device
下面整的是基于注意力机制的解码器。
注意力使得解码器关注于编码器输出的不同部分。首先我们计算注意力权重,这个权重会被乘到编码器的输出上来实现加权。结果(attn_applied)将会包含输入序列特定位置的讯息。帮助解码器选择正确的输出。
计算注意力权重可以利用另一个前馈层attn,利用解码器的输入和隐藏态作为输入。因为训练数据中有各种尺寸的序列,为了训练我们选择一个最大长度的序列(输入长度,为了编码输出)。最大长度的序列将利用所有的注意力权重,短的序列将仅仅利用初始的几个权重。

class AttnDecoderRNN(nn.Module): def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH): super(AttnDecoderRNN, self).__init__() self.hidden_size = hidden_size self.output_size = output_size self.dropout_p = dropout_p self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size) self.attn = nn.Linear(self.hidden_size * 2, self.max_length) self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size) self.dropout = nn.Dropout(self.dropout_p) self.gru = nn.GRU(self.hidden_size, self.hidden_size) self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs): embedded = self.embedding(input).view(1, 1, -1) embedded = self.dropout(embedded) attn_weights = F.softmax( self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1) attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0], attn_applied[0]), 1) output = self.attn_combine(output).unsqueeze(0) output = F.relu(output) output, hidden = self.gru(output, hidden) output = F.log_softmax(self.out(output[0]), dim=1) return output, hidden, attn_weights def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device)
拓展注意力机制模型:There are other forms of attention that work around the length limitation by using a relative position approach. Read about “local attention” in Effective Approaches to Attention-based Neural Machine Translation.
训练
准备训练数据
为了训练,每个数据对需要一个输入tensor(输入序列的单词索引)和目标tensor(目标序列的单词索引)。
def indexesFromSentence(lang, sentence): return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence): indexes = indexesFromSentence(lang, sentence) indexes.append(EOS_token) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def tensorsFromPair(pair): input_tensor = tensorFromSentence(input_lang, pair[0]) target_tensor = tensorFromSentence(output_lang, pair[1]) return (input_tensor, target_tensor)
训练模型
为了训练将输入序列输入到编码器,然后跟踪每个输出和最近的隐藏态。然后解码器给定<SOS>作为首先输入,最编码器后的隐藏态作为第一个隐藏态。
“Teacher forcing”是利用真实目标输出作为每次输入,而非利用解码器的预测作为下一次输入。利用teacher forcing使得收敛较快但是可能会不稳定。
你可以观察到教师强制网络的输出,这些网络以连贯的语法阅读,但却远远偏离了正确的翻译——直觉上,它已经学会了表示输出语法,并且一旦教师告诉它前几个单词,它就可以“拾起”它的意思,但它还没有正确地学会如何从翻译中造句。
由于Pythorch的自动求导机制,我们可以随机选择使用教师强制或不使用简单的if语句。将教师强制比率调高以使用更多的比率。
teacher_forcing_ratio = 0.5 def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH): encoder_hidden = encoder.initHidden() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() input_length = input_tensor.size(0) target_length = target_tensor.size(0) encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) loss = 0 for ei in range(input_length): encoder_output, encoder_hidden = encoder( input_tensor[ei], encoder_hidden) encoder_outputs[ei] = encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) decoder_hidden = encoder_hidden use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing: # Teacher forcing: Feed the target as the next input for di in range(target_length): decoder_output, decoder_hidden, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) loss += criterion(decoder_output, target_tensor[di]) decoder_input = target_tensor[di] # Teacher forcing else: # Without teacher forcing: use its own predictions as the next input for di in range(target_length): decoder_output, decoder_hidden, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) topv, topi = decoder_output.topk(1) decoder_input = topi.squeeze().detach() # detach from history as input loss += criterion(decoder_output, target_tensor[di]) if decoder_input.item() == EOS_token: break loss.backward() encoder_optimizer.step() decoder_optimizer.step() return loss.item() / target_length
帮助函数打印时间进度:
import time import math def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
整个训练过程:
- 开启计时
- 初始化优化器和损失
- 建立训练集
- 记录损失用于画图
然后调用train函数多次并打印过程。
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01): start = time.time() plot_losses = [] print_loss_total = 0 # Reset every print_every plot_loss_total = 0 # Reset every plot_every encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate) training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)] criterion = nn.NLLLoss() for iter in range(1, n_iters + 1): training_pair = training_pairs[iter - 1] input_tensor = training_pair[0] target_tensor = training_pair[1] loss = train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion) print_loss_total += loss plot_loss_total += loss if iter % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters), iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0 showPlot(plot_losses)
打印结果
import matplotlib.pyplot as plt plt.switch_backend('agg') import matplotlib.ticker as ticker import numpy as np def showPlot(points): plt.figure() fig, ax = plt.subplots() # this locator puts ticks at regular intervals loc = ticker.MultipleLocator(base=0.2) ax.yaxis.set_major_locator(loc) plt.plot(points)
评估
评估和训练基本上是一样的,但是没有目标,所以我们只是在每一步将解码器的预测反馈给自己。每次它预测一个单词,我们就把它加到输出字符串中,如果它预测EOS标记,我们就停在那里。我们还存储解码器的注意输出,以便以后显示。
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH): with torch.no_grad(): input_tensor = tensorFromSentence(input_lang, sentence) input_length = input_tensor.size()[0] encoder_hidden = encoder.initHidden() encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden) encoder_outputs[ei] += encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) # SOS decoder_hidden = encoder_hidden decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length): decoder_output, decoder_hidden, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) decoder_attentions[di] = decoder_attention.data topv, topi = decoder_output.data.topk(1) if topi.item() == EOS_token: decoded_words.append('<EOS>') break else: decoded_words.append(output_lang.index2word[topi.item()]) decoder_input = topi.squeeze().detach() return decoded_words, decoder_attentions[:di + 1]
我们可以对训练集中的随机句子进行评估,并打印出输入、目标和输出,从而做出一些主观的质量判断:
def evaluateRandomly(encoder, decoder, n=10): for i in range(n): pair = random.choice(pairs) print('>', pair[0]) print('=', pair[1]) output_words, attentions = evaluate(encoder, decoder, pair[0]) output_sentence = ' '.join(output_words) print('<', output_sentence) print('')
训练与评估
有了所有这些帮助函数(看起来像是额外的工作,但它使运行多个实验更容易),我们可以实际初始化网络并开始训练。
记住,输入的句子是经过严格筛选的。对于这个小数据集,我们可以使用由256个隐藏节点和单个GRU层组成的相对较小的网络。在MacBook CPU上运行大约40分钟后。将得到一些合理的结果。
hidden_size = 256 encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device) attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device) trainIters(encoder1, attn_decoder1, 75000, print_every=5000)


evaluateRandomly(encoder1, attn_decoder1)

注意力机制可视化
注意机制的一个有用特性是它的高解释性输出。因为它用于对输入序列的特定编码器输出进行加权,所以我们可以想象在每一个时间步骤中,查看网络最集中的位置。
只需运行plt.matshow(attentions)即可看到attention输出显示为一个矩阵,其中列是输入步骤,行是输出步骤:
output_words, attentions = evaluate( encoder1, attn_decoder1, "je suis trop froid .") plt.matshow(attentions.numpy())

为了获得更好的观看体验,将额外添加轴和标签:
def showAttention(input_sentence, output_words, attentions): # Set up figure with colorbar fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(attentions.numpy(), cmap='bone') fig.colorbar(cax) # Set up axes ax.set_xticklabels([''] + input_sentence.split(' ') + ['<EOS>'], rotation=90) ax.set_yticklabels([''] + output_words) # Show label at every tick ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) plt.show() def evaluateAndShowAttention(input_sentence): output_words, attentions = evaluate( encoder1, attn_decoder1, input_sentence) print('input =', input_sentence) print('output =', ' '.join(output_words)) showAttention(input_sentence, output_words, attentions) evaluateAndShowAttention("elle a cinq ans de moins que moi .") evaluateAndShowAttention("elle est trop petit .") evaluateAndShowAttention("je ne crains pas de mourir .") evaluateAndShowAttention("c est un jeune directeur plein de talent .")


Exercises
- Try with a different datasetReplace the embeddings with pre-trained word embeddings such as word2vec or GloVe
- Another language pair
- Human → Machine (e.g. IOT commands)
- Chat → Response
- Question → Answer
- Try with more layers, more hidden units, and more sentences. Compare the training time and results.
- If you use a translation file where pairs have two of the same phrase (
I am test \t I am test), you can use this as an autoencoder. Try this:- Train as an autoencoder
- Save only the Encoder network
- Train a new Decoder for translation from there

浙公网安备 33010602011771号