import numpy as np
import operator
import matplotlib
import matplotlib.pyplot as plt
import os
def createDataSet():
group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataSet, labels, k):
# kNN算法简单流程
dataSetSize = dataSet.shape[0]
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def file2matrix(filename):
# 将txt文件转化为需要的数据格式
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = np.zeros((numberOfLines, 3))
classLabelVectors = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVectors.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVectors
"""
data, labels = file2matrix("datingTestSet.txt")
# print(data)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(data[:, 0], data[:, 1], 15*np.array(labels), 15*np.array(labels))
plt.show()
"""
def autoNorm(dataSet):
"""
归一化特征值
:param dataSet: 训练集数据
:return:
"""
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m, 1))
normDataSet = normDataSet / np.tile(ranges, (m, 1))
return normDataSet, ranges, minVals
def datingClassTest():
"""
测试分类效果,即the error rate
"""
hoRatio = 0.1
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :],
datingLabels[numTestVecs:m], 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult,
datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
def classifyPerson():
"""
构建完整可用系统,即约会网站预测函数
"""
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input("percentage of time spent playing video games? "))
ffMiles = float(input("frequent flier miles earned per year? "))
iceCream = float(input("liters of ice cream consumed per year? "))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = np.array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3)
print("You will probably like this person:", resultList[classifierResult - 1])
def img2vector(filename):
"""
手写识别将图像转换为测试向量
:param filename:
:return:
"""
returnVect = np.zeros((1, 1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
return returnVect
testVector = img2vector('digits/testDigits/0_13.txt')
def handwritingClassTest():
"""
手写数字识别系统的测试代码
"""
hwLabels = []
trainingFileList = os.listdir('digits/trainingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i, :] = img2vector('digits/trainingDigits/%s' % fileNameStr)
testFileList = os.listdir('digits/testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileNameStr.split('_')[0])
vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult,
classNumStr))
if classifierResult != classNumStr:
errorCount += 1.0
print("\nthe total number of errors is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount/float(mTest)))
handwritingClassTest()