顺手存的数论 博弈
费马小定理:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)。即:假如a是整数,p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1。
求1-n中每个数的正因子和:
for(LL i=1;i<n;i++)//枚举因子 n为范围
{
for(LL j=i;j<n;j+=i)//枚举含有因子的数
{
val[j]+=i;
}
} 威佐夫博奕:
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。 可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有 如下三条性质: 1。任何自然数都包含在一个且仅有一个奇异局势中。 由于ak是未在前面出现过的最小自然数,所以有ak
> ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。 2。任意操作都可将奇异局势变为非奇异局势。 事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。 3。采用适当的方法,可以将非奇异局势变为奇异局势。 假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a
= ak ,b > bk,那么,取走b – bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – aj 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。 那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式: ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数) 奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[(1+√5)/2],那么a = aj,bj =
aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
N个人围成圈 每次跳m个 相当于向反方向移动gcd(n,m);
同余。。
假如 A%X == B%X (设A<B)
那么 (A*10+Ki)%X==(B*10+Ki)%X

浙公网安备 33010602011771号