NOI模拟赛(3.8)Problem B
Solution
由于是博弈论,可以转化成求二分图的关键点,即必然在二分图匹配中出现的点
算法要考虑染色,即当前点染黑,周围点染白,染色后把连通块都用算法匹配掉
若Alice走不在最大匹配点集内的点,则该点的周围连的一定都是匹配点,可知Bob一定走一条非匹配边到一个匹配点
由于只要先选了最大匹配点就必胜,因此在这个条件下Alice必胜
最后统计一下答案就好了
#include <stdio.h>
#include <string.h>
template<class T> inline void read(T &x)
{
int c=getchar();bool b=0;
for(x=0;c<48||c>57;c=getchar())if(c==45)b=1;
for(;c>47&&c<58;c=getchar())x=(x<<1)+(x<<3)+c-48;
if(b)x=-x;
}
const int N=200;
bool win[N*N];
int color[N*N],n,m,lab,num[N][N],vind,vis[N*N],lnk[N*N],Ans,fir[N*N],et=-1;
char mat[N][N];
struct Position
{
int x,y;
}pos[N*N];
struct Pointer
{
int v,next;
}e[N*N*5];
inline void link(int x,int y)
{
e[++et]=(Pointer){y,fir[x]},fir[x]=et;
e[++et]=(Pointer){x,fir[y]},fir[y]=et;
}
bool dfs(int at)
{
for(int j=fir[at];~j;j=e[j].next)
if(vis[e[j].v]!=vind)
{
vis[e[j].v]=vind;
if((!lnk[e[j].v]) || dfs(lnk[e[j].v]))
{
lnk[e[j].v]=at;
return 1;
}
}
return 0;
}
void find(int at)
{
for(int j=fir[at];~j;j=e[j].next)
if(lnk[e[j].v] && (!win[lnk[e[j].v]]))
{
win[lnk[e[j].v]]=1;
find(lnk[e[j].v]);
}
}
int main()
{
memset(fir,-1,sizeof fir);
read(n),read(m);
for(int i=1;i<=n;i++)
scanf("%s",mat[i]+1);
lab=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(mat[i][j]=='.')
{
num[i][j]=++lab;
pos[lab].x=i;
pos[lab].y=j;
color[lab]=((i+j)&1);
if(i>1 && mat[i-1][j]=='.')
link(lab,num[i-1][j]);
if(j>1 && mat[i][j-1]=='.')
link(lab,num[i][j-1]);
}
for(int i=1;i<=lab;i++)
if(!color[i])
{
++vind;
dfs(i);
}
for(int i=1;i<=lab;i++)
if(color[i]&&lnk[i])
lnk[lnk[i]]=i;
for(int i=1;i<=lab;i++)
if(!lnk[i])
{
win[i]=1;
find(i);
}
Ans=0;
for(int i=1;i<=lab;i++)
Ans+=win[i];
printf("%d\n",Ans);
for(int i=1;i<=lab;i++)
if(win[i])
printf("%d %d\n",pos[i].x,pos[i].y);
return 0;
}

浙公网安备 33010602011771号