dpdk中QSBR具体实现

概述

dpdk19.01提供了qsbr模式的rcu库,其具体实现在lib/librte_rcu目录中。
librte_rcu是无锁线程安全的,这个库提供了读者报告静默状态的能力,让写者知道读者是否进入过静默状态。

dpdk中QSBR具体实现是通过一个struct rte_rcu_qsbr_cnt变量qs,将多个线程共享的内存管理起来。总体思路是通过比较线程的静默期版本号与qs全局版本号的大小,判断是否所有线程进入过本次静默期。

使用librte_rcu进行内存释放的线程的基本步骤如下:

  • 解除内存的引用
  • 调用rte_rcu_qsbr_start()函数将全局版本号加1,触发所有读线程报告静默状态
  • 调用rte_rcu_qsbr_check()遍历检查所有读者线程,确保都进入过本次静默期
  • 释放内存

初始化

初始化时,会用到一些通过的工具宏,定义在在dpdk-master/lib/librte_eal/common/include/rte_common.h中。如下:


#define RTE_CACHE_LINE_SIZE 64

#define RTE_ALIGN_MUL_CEIL(v, mul) \
	((v + 64 - 1)/64) * 64 // (64地板除 + 1)*64

#define RTE_ALIGN_FLOOR(val, 64) \
	val & (~(64 - 1)) // 64的地板除

#define RTE_ALIGN_CEIL(val, 64) \
	RTE_ALIGN_FLOOR(val + 64 - 1, 64) // 64的地板除 + 1

#define RTE_ALIGN(val, align) RTE_ALIGN_CEIL(val, align) // 64的地板除 + 1

dpdk-master\lib\librte_rcu\rte_rcu_qsbr.h中,定义了初始化时用到的一些函数与宏。

/* 工作线程计数器 */
struct rte_rcu_qsbr_cnt {
	uint64_t cnt; // 静默态计数器,0表示下线。使用64bits,防止计数溢出
	uint32_t lock_cnt; // counter锁, 用于CONFIG_RTE_LIBRTE_RCU_DEBUG
} __rte_cache_aligned;

#define __RTE_QSBR_THRID_ARRAY_ELM_SIZE (sizeof(uint64_t) * 8) // 数组元素大小为64 B
#define __RTE_QSBR_THRID_ARRAY_SIZE(max_threads)\
      RTE_ALIGN(RTE_ALIGN_MUL_CEIL(max_threads, 64) >> 3, RTE_CACHE_LINE_SIZE) // 计算得到线程数组的大小

/*
 * (struct rte_rcu_qsbr_cnt *)(v + 1): 获得 v中 rte_rcu_qsbr_cnt 的地址偏移,此时指针p变为 struct rte_rcu_qsbr_cnt *类型
 * + v->max_threads: 得到 v中thread id_array的偏移,
 * + i 
*/
#define __RTE_QSBR_THRID_ARRAY_ELM(v, i)  // 获得线程数组的第 i 个
     ((uint64_t *) ((struct rte_rcu_qsbr_cnt *)(v + 1) + v->max_threads) + i)  
#define __RTE_QSBR_THRID_INDEX_SHIFT 6
#define __RTE_QSBR_THRID_MASK 0x3f
#define RTE_QSBR_THRID_INVALID 0xffffffff


/*  
 * 获得QSBR变量的内存大小,包括rte_rcu_qsbr + thread ID bitmap array变量
*/
size_t
rte_rcu_qsbr_get_memsize(uint32_t max_threads)
{
	size_t sz;	// rcu_qsbr
	sz = sizeof(struct rte_rcu_qsbr);
	/* Add the size of quiescent state counter array */
	sz += sizeof(struct rte_rcu_qsbr_cnt) * max_threads;
	/* Add the size of the registered thread ID bitmap array */
	sz += __RTE_QSBR_THRID_ARRAY_SIZE(max_threads); 

	return sz;
}

qsbr rcu真正的初始化在函数rte_rcu_qsbr_init()中,主要是初始化变量的值。

int
rte_rcu_qsbr_init(struct rte_rcu_qsbr *v, uint32_t max_threads)
{
	size_t sz;

	sz = rte_rcu_qsbr_get_memsize(max_threads);
	if (sz == 1)
		return 1;

	/* Set all the threads to offline */
	memset(v, 0, sz); // 获得大小,初始化为零
	v->max_threads = max_threads;
	v->num_elems = RTE_ALIGN_MUL_CEIL(max_threads,
			__RTE_QSBR_THRID_ARRAY_ELM_SIZE) /
			__RTE_QSBR_THRID_ARRAY_ELM_SIZE; // 根据最大线程数,获得 thread_id array的元素个数
	v->token = __RTE_QSBR_CNT_INIT;
	v->acked_token = __RTE_QSBR_CNT_INIT - 1;

	return 0;
}

其中, rte_rcu_qsbr_init 函数中的参数中,传入了全局变量rte_rcu_qsbr,其存储了静默期版本号,以及所有注册了的线程的thread_Id与局部静默期版本号。
此变量定义如下:

struct rte_rcu_qsbr {
	uint64_t token __rte_cache_aligned;  // 允许多个并发静态查询的计数器
	/**< Counter to allow for multiple concurrent quiescent state queries */
	uint64_t acked_token;
	/**< Least token acked by all the threads in the last call to
	 *   rte_rcu_qsbr_check API.
	 */

	uint32_t num_elems __rte_cache_aligned;
	/**< Number of elements in the thread ID array */
	uint32_t num_threads;
	/**< Number of threads currently using this QS variable */
	uint32_t max_threads;
	/**< Maximum number of threads using this QS variable */

	struct rte_rcu_qsbr_cnt qsbr_cnt[0] __rte_cache_aligned;
	/**< Quiescent state counter array of 'max_threads' elements */

	/**< Registered thread IDs are stored in a bitmap array,
	 *   after the quiescent state counter array.
	 */
} __rte_cache_aligned;

注册与注销

通过rte_rcu_qsbr_thread_register函数,注册一个读者线程的thread_id到 全局变量 rte_rcu_qsbr 的 thread 数组位图中,并更新线程数num_threads

int
rte_rcu_qsbr_thread_register(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
	unsigned int i, id, success;
	uint64_t old_bmap, new_bmap;

	id = thread_id & __RTE_QSBR_THRID_MASK;  // thread_id%64, 表示bits<64>中位图中的哪一位
	i = thread_id >> __RTE_QSBR_THRID_INDEX_SHIFT;  // thread_id/64,表示uint64_t数组的索引

	 /*
	  * 确保已注册线程的计数器不会不同步。因此,需要额外的检查。
	  */
	old_bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),
					__ATOMIC_RELAXED); // 获得 thread_id所在的 bits<64>
	if (old_bmap & 1UL << id) // bits<64>中的id位是否为1
		return 0; // 等于1,表示已注册,则返回
	do { // 若没有注册,则注册,并对num_threads + 1
		new_bmap = old_bmap | (1UL << id); /
		success = __atomic_compare_exchange(
					__RTE_QSBR_THRID_ARRAY_ELM(v, i),
					&old_bmap, &new_bmap, 0,
					__ATOMIC_RELEASE, __ATOMIC_RELAXED);

		if (success)
			__atomic_fetch_add(&v->num_threads,  // 加1
						1, __ATOMIC_RELAXED);
		else if (old_bmap & (1UL << id)) // 抢注册
			return 0;
	} while (success == 0);

	return 0;
}

通过rte_rcu_qsbr_thread_unregister函数将读线程的thread_id 从全局变量 rte_rcu_qsbr 的 thread数组位图中移除。

int
rte_rcu_qsbr_thread_unregister(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
	unsigned int i, id, success;
	uint64_t old_bmap, new_bmap;

	__RTE_RCU_IS_LOCK_CNT_ZERO(v, thread_id, ERR, "Lock counter %u\n",
				v->qsbr_cnt[thread_id].lock_cnt);

	id = thread_id & __RTE_QSBR_THRID_MASK;
	i = thread_id >> __RTE_QSBR_THRID_INDEX_SHIFT;

	/* Make sure that the counter for registered threads does not
	 * go out of sync. Hence, additional checks are required.
	 */
	/* Check if the thread is already unregistered */
	old_bmap = __atomic_load_n(__RTE_QSBR_THRID_ARRAY_ELM(v, i),
					__ATOMIC_RELAXED);
	if (!(old_bmap & (1UL << id)))
		return 0;
	do {
		new_bmap = old_bmap & ~(1UL << id);
		/* Make sure any loads of the shared data structure are
		 * completed before removal of the thread from the list of
		 * reporting threads.
		 */
		success = __atomic_compare_exchange(
					__RTE_QSBR_THRID_ARRAY_ELM(v, i),
					&old_bmap, &new_bmap, 0,
					__ATOMIC_RELEASE, __ATOMIC_RELAXED);

		if (success)
			__atomic_fetch_sub(&v->num_threads,
						1, __ATOMIC_RELAXED);
		else if (!(old_bmap & (1UL << id)))
			/* Someone else unregistered this thread.
			 * Counter should not be incremented.
			 */
			return 0;
	} while (success == 0);

	return 0;
}

上线与下线

线程的上线通过rte_rcu_qsbr_thread_online()函数将局部静默期版本号更新到全局版本。
rte_rcu_qsbr_thread_online()函数的简化版本如下:

static __rte_always_inline void
rte_rcu_qsbr_thread_online(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
	uint64_t t;
	t = __atomic_load_n(&v->token, __ATOMIC_RELAXED); // 获得全局版本号

	__atomic_store_n(&v->qsbr_cnt[thread_id].cnt, // 更新本线程的局部静默期版本号
		t, __ATOMIC_RELAXED);
}

线程的下线就是通过rte_rcu_qsbr_thread_offline()函数,将局部静默期版本号设置为0。

__rte_experimental
static __rte_always_inline void
rte_rcu_qsbr_thread_offline(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
	__atomic_store_n(&v->qsbr_cnt[thread_id].cnt, 0, __ATOMIC_RELEASE);
}

等待静默

通过rte_rcu_qsbr_synchronize()函数等待所有线程进入过静默期,其主要工作如下:

  • 首先,对全局的静默期的版本加1;
  • 然后,判断本线程局部静默期版本是否等于全局的,若不等于,则更新到最新;
  • 最后,遍历所有注册了的并且在线的线程的静默期版本号cnt的值,确定是否所有线程都进入过本次静默期,若没有,则等待所有读线程都进入过静默状态。
void
rte_rcu_qsbr_synchronize(struct rte_rcu_qsbr *v, unsigned int thread_id)
{
	uint64_t t;
	t = rte_rcu_qsbr_start(v); // 将 v->token 加1,并存储在局部变量中

	/* 若当前线程还在临界区,更新其静默状态 */
	if (thread_id != RTE_QSBR_THRID_INVALID) // 0xffffffff
		rte_rcu_qsbr_quiescent(v, thread_id);  // 更新本线程的 v->qsbr_cnt[thread_id].cnt 到最新token

	/* 等待其他读者进入静默期 */
	rte_rcu_qsbr_check(v, t, true); 
}

注意:
线程每调用一次rte_rcu_qsbr_synchronize()函数,全局的静默期版本号token就会加1。
因为多个线程同时调用此函数,线程的局部静默期版本号cnt一般会小于全局好几个版本。
事实上,若线程调用了一次rte_rcu_qsbr_synchronize(),其版本号就会大于存储在其他线程局部变量t中的全局版本号。

具体是通过rte_rcu_qsbr_check()判断所有线程是否都进行了本次静默。

__rte_experimental
static __rte_always_inline int
rte_rcu_qsbr_check(struct rte_rcu_qsbr *v, uint64_t t, bool wait)
{
	/* 判断是否所有线程都进入过静默期 */
	if (likely(t <= v->acked_token))
		return 1;
		
    /* 若没有确认过,则遍历线程确认。 */
	if (likely(v->num_threads == v->max_threads))
		return __rte_rcu_qsbr_check_all(v, t, wait);
	else
		return __rte_rcu_qsbr_check_selective(v, t, wait);
}

其中,__rte_rcu_qsbr_check_all()函数与__rte_rcu_qsbr_check_selective()函数类似,
都是通过遍历注册在thread_id array中的所有线程的cnt,判断是否所有线程进入过静默期。下面,以函数__rte_rcu_qsbr_check_all()进行说明。

static __rte_always_inline int
__rte_rcu_qsbr_check_selective(struct rte_rcu_qsbr *v, uint64_t t, bool wait)
{
	uint32_t i, j, id;
	uint64_t bmap;
	uint64_t c;
	uint64_t *reg_thread_id;
	uint64_t acked_token = __RTE_QSBR_CNT_MAX;  // ((uint64_t)~0)

    /* 遍历注册在thread_id array中的所有线程的版本,等待所有线程进入过静默期 */
	for (i = 0, reg_thread_id = __RTE_QSBR_THRID_ARRAY_ELM(v, 0); // 获得第0个 thread_id array元素
		i < v->num_elems; // thread_id array 元素个数
		i++, reg_thread_id++) {
         
        /* 获得bmap所标识的所有线程id的公共前缀 */
		bmap = __atomic_load_n(reg_thread_id, __ATOMIC_ACQUIRE);
		id = i << __RTE_QSBR_THRID_INDEX_SHIFT; // 

		while (bmap) {
		    /* 获得线程的id,以及对应的计数器 */
			j = __builtin_ctzl(bmap); // bmap中的第一个注册线程
			c = __atomic_load_n( // 获得线程id的cnt
					&v->qsbr_cnt[id + j].cnt, // id + j = thread_id
					__ATOMIC_ACQUIRE);

             /* 若线程没有下线,并且静默期号小于t,则等待,直到其大于等于 */
			if (unlikely(c != __RTE_QSBR_CNT_THR_OFFLINE && c < t)) {
				/* This thread is not in quiescent state */
				if (!wait) // 若不等待则直接返回
					return 0; 

				rte_pause(); // 暂定CPU执行一小段时间
				bmap = __atomic_load_n(reg_thread_id, // 重新查看未退出注册的线程,是否进入静默期
						__ATOMIC_ACQUIRE);
				continue;
			}

			 /* 更新acked_token到最新版本 */
			if (c != __RTE_QSBR_CNT_THR_OFFLINE && acked_token > c)  
				acked_token = c;

			bmap &= ~(1UL << j);
		}
	}

	if (acked_token != __RTE_QSBR_CNT_MAX)
		__atomic_store_n(&v->acked_token, acked_token,  // 若所有的读者都已经进入过静默期,则将最新的静默期版本更新
			__ATOMIC_RELAXED);

	return 1;
}

示例:
dpdk/app/test/test_rcu_qsbr.c中,

附录

  1. type __atomic_load_n (type *ptr, int memorder),GCC内建函数,实现原子的加载操作,返回*ptr
    有限的 memorder有:__ATOMIC_RELAXED, __ATOMIC_SEQ_CST, __ATOMIC_ACQUIRE, __ATOMIC_CONSUME

目前最新版本的gcc、clang的原子操作实现均符合c++11定义的原子操作6种内存模型:

__ATOMIC_RELAXED No barriers or synchronization.
__ATOMIC_CONSUME Data dependency only for both barrier and synchronization with another thread.
__ATOMIC_ACQUIRE Barrier to hoisting of code and synchronizes with release (or stronger) semantic stores from another thread.
__ATOMIC_RELEASE Barrier to sinking of code and synchronizes with acquire (or stronger) semantic loads from another thread.
__ATOMIC_ACQ_REL Full barrier in both directions and synchronizes with acquire loads and release stores in another thread.
__ATOMIC_SEQ_CST Full barrier in both directions and synchronizes with acquire loads and release stores in all threads.

详见 http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync

  1. void __atomic_store_n (type *ptr, type val, int memorder),GCC内建函数,实现原子的存操作,将val的值写入*ptr。

  2. __builtin_ctz(x):
    计算器x二进制表示,末尾有多少个0。
    例如,a = 16,其二进制表示是 00000000 00000000 00000000 00010000,输出为ctz = 4
    类似的函数有__builtin_ctzl(x)__builtin_ctzll(x),分别用于long类型,与long long类型的数据。

  3. static void rte_pause(void): 暂停CPU执行一段时间, 此调用用于轮询共享资源或等待事件的紧循环。在回路中短暂的停顿可以降低功耗。

原文阅读

微信公共号

NFVschool,关注最前沿的网络技术。

参考

posted @ 2020-03-19 22:29  可酷可乐  阅读(1210)  评论(0编辑  收藏  举报