线程的并发工具类

Fork-Join(分而治之) 规模为N的问题,N<阈值,直接解决,N>阈值,将N分解为K个小规模子问题,子问题互相对立,与原问题形式相同,将子问题的解合并得到原问题的解 如何使用的流程图

 

 

 

 

用法

1.Fork/Join的同步用法同时演示返回结果值:统计整形数组中所有元素的和

两个main方法,SumSingleThread类里的main是单线程求和,每次休眠一秒;SumByForkJoin类里使用forkandjoin进行求和

下面是个生成随机整数数组的类

import java.util.Random;

/**
 * 产生一个整形的数组
 * */
public class CreateArray {
    public static final int ARRAY_LENTH=1000;
    public static int[] createArray(){
        Random r = new Random();
        int[] result = new int[ARRAY_LENTH];
        for(int i=0;i<ARRAY_LENTH;i++){
            result[i]=r.nextInt(ARRAY_LENTH*3);
        }
        return result;
    }
}
import com.thread.demo.SleepTools;

public class SumSingleThread {
    public static void main(String[] args) {
         int count = 0;
            int[] src =CreateArray.createArray();

            long start = System.currentTimeMillis();
            for(int i= 0;i<src.length;i++){
                SleepTools.ms(1);
                count = count + src[i];
            }
            System.out.println("The count is "+count
                    +" spend time:"+(System.currentTimeMillis()-start)+"ms");    
    }

}
public class SumByForkJoin {
    private static class SumTask extends RecursiveTask<Integer>{
        private static final int THRESHOLD = CreateArray.ARRAY_LENTH/10;
        private int[] src; //表示我们要实际统计的数组
        private int fromIndex;//开始统计的下标
        private int toIndex;//统计到哪里结束的下标
        public SumTask(int[] src, int fromIndex, int toIndex) {
            this.src = src;
            this.fromIndex = fromIndex;
            this.toIndex = toIndex;
        }
        /**
         * 这个是有返回值的,在compute方法中按照需要的逻辑写forkjoin逻辑
         * */
        @Override
        protected Integer compute() {
            //当满足阈值范围时,进入计算
            if(toIndex-fromIndex<THRESHOLD){
                int count = 0;
                for(int i=fromIndex;i<toIndex;i++){
                    count=count+src[i];
                }
                return count;
            }else{//不满足阈值时,继续拆分
                int mid = (fromIndex+toIndex)/2;
                SumTask left = new SumTask(src, fromIndex, mid);
                SumTask right = new SumTask(src, mid+1, toIndex);
                invokeAll(left, right);
                return left.join()+right.join();
                }
            }
        }
    
    public static void main(String[] args) {
        
          ForkJoinPool pool = new ForkJoinPool();
          int[] src = CreateArray.createArray();

          SumTask innerFind = new SumTask(src,0,src.length-1);

          long start = System.currentTimeMillis();

          pool.invoke(innerFind);//同步调用,就是这个方法执行完才会继续执行下面的sysout,所以以这个demo是同步的用法,异步调用的方法:execute(object)
          System.out.println("Task is Running.....");

          System.out.println("The count is "+innerFind.join()
                  +" spend time:"+(System.currentTimeMillis()-start)+"ms");
    }
   

}

Q:把循环求和中的sleep注掉,并且增大数组的长度,会发现,在小于一定长度时,单线程直接求和的速度比使用fork/jion快

A:因为使用forkJoin时cpu会进行上下问切换操作,这个操作相比较于计算型操作其实更费时间

2.Fork/Join的异步用法同时演示不要求返回值:遍历指定目录(含子目录)寻找指定类型文件

import java.io.File;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

public class FindFile extends RecursiveAction{
    private File path;
    public  FindFile(File path) {
        this.path=path;
        
    }
    
    @Override
    protected void compute() {
        List<FindFile> subTasks = new ArrayList<FindFile>();
        File[] files = path.listFiles();
        if(files!=null){
            
        
        for(File file:files){//循环文件路径
            if(file.isDirectory()){//判断是不是目录
                subTasks.add(new FindFile(file));
            }else{
                if(file.getAbsolutePath().endsWith("avi")){
                    System.out.println("找到对应文件:"+file.getAbsolutePath());
                }
            }
        }
        if(!subTasks.isEmpty()){
            for(FindFile sub:invokeAll(subTasks)){//invokeAll的返回值和传入的值一样
                sub.join();
            }
        }
        }
    }
    public static void main(String[] args) {
        try {
            ForkJoinPool pool = new ForkJoinPool();
            FindFile task = new FindFile(new File("D:/"));

            pool.execute(task);//异步调用

            System.out.println("Task is Running......");
            Thread.sleep(1);
            int otherWork = 0;
            for(int i=0;i<100;i++){
                otherWork = otherWork+i;
            }
            System.err.println("Main Thread done sth......,otherWork="+otherWork);
            task.join();//阻塞的方法,此处是为了防止出现主线程走完,task被直接中断的情况
            System.out.println("Task end");
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }

}

常用的并发工具类(直接放课程里的demo了,很详细了~)

CountDownLatch

作用:是一组线程等待其他的线程完成工作以后在执行,加强版join

await用来等待,countDown负责计数器的减一

import java.util.concurrent.CountDownLatch;

import com.xiangxue.tools.SleepTools;

/**
 *@author Mark老师   享学课堂 https://enjoy.ke.qq.com 
 *
 *类说明:演示CountDownLatch,有5个初始化的线程,6个扣除点,
 *扣除完毕以后,主线程和业务线程才能继续自己的工作
 */
public class UseCountDownLatch {
    
    static CountDownLatch latch = new CountDownLatch(6);

    //初始化线程(只有一步,有4个)
    private static class InitThread implements Runnable{

        @Override
        public void run() {
            System.out.println("Thread_"+Thread.currentThread().getId()
                    +" ready init work......");
            latch.countDown();//初始化线程完成工作了,countDown方法只扣减一次;
            for(int i =0;i<2;i++) {
                System.out.println("Thread_"+Thread.currentThread().getId()
                        +" ........continue do its work");
            }
        }
    }
    
    //业务线程
    private static class BusiThread implements Runnable{

        @Override
        public void run() {
            try {
                latch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            for(int i =0;i<3;i++) {
                System.out.println("BusiThread_"+Thread.currentThread().getId()
                        +" do business-----");
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        //单独的初始化线程,初始化分为2步,需要扣减两次
        new Thread(new Runnable() {
            @Override
            public void run() {
                SleepTools.ms(1);
                System.out.println("Thread_"+Thread.currentThread().getId()
                        +" ready init work step 1st......");
                latch.countDown();//每完成一步初始化工作,扣减一次
                System.out.println("begin step 2nd.......");
                SleepTools.ms(1);
                System.out.println("Thread_"+Thread.currentThread().getId()
                        +" ready init work step 2nd......");
                latch.countDown();//每完成一步初始化工作,扣减一次
            }
        }).start();
        new Thread(new BusiThread()).start();
        for(int i=0;i<=3;i++){
            Thread thread = new Thread(new InitThread());
            thread.start();
        }

        latch.await();
        System.out.println("Main do ites work........");
    }
}

CyclicBarrier

让一组线程达到某个屏障,被阻塞,一直到组内最后一个线程达到屏障时,屏障开放,所有被阻塞的线程会继续运行CyclicBarrier(int parties)

CyclicBarrier(int parties, Runnable barrierAction),屏障开放,barrierAction定义的任务会执行

CountDownLatch和CyclicBarrier辨析

1、countdownlatch放行由第三者控制,CyclicBarrier放行由一组线程本身控制
2、countdownlatch放行条件》=线程数,CyclicBarrier放行条件=线程数

import java.util.Map;
import java.util.Random;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CyclicBarrier;

/**
 *@author Mark老师   享学课堂 https://enjoy.ke.qq.com 
 *
 *类说明:CyclicBarrier的使用
 */
public class UseCyclicBarrier {
    
    private static CyclicBarrier barrier 
        = new CyclicBarrier(5,new CollectThread());
    
    private static ConcurrentHashMap<String,Long> resultMap
            = new ConcurrentHashMap<>();//存放子线程工作结果的容器

    public static void main(String[] args) {
        for(int i=0;i<=4;i++){
            Thread thread = new Thread(new SubThread());
            thread.start();
        }

    }

    //负责屏障开放以后的工作
    private static class CollectThread implements Runnable{

        @Override
        public void run() {
            StringBuilder result = new StringBuilder();
            for(Map.Entry<String,Long> workResult:resultMap.entrySet()){
                result.append("["+workResult.getValue()+"]");
            }
            System.out.println(" the result = "+ result);
            System.out.println("do other business........");
        }
    }

    //工作线程
    private static class SubThread implements Runnable{

        @Override
        public void run() {
            long id = Thread.currentThread().getId();//线程本身的处理结果
            resultMap.put(Thread.currentThread().getId()+"",id);
            Random r = new Random();//随机决定工作线程的是否睡眠
            try {
                if(r.nextBoolean()) {
                    Thread.sleep(2000+id);
                    System.out.println("Thread_"+id+" ....do something ");
                }
                System.out.println(id+"....is await");
                barrier.await();
                Thread.sleep(1000+id);
                System.out.println("Thread_"+id+" ....do its business ");
            } catch (Exception e) {
                e.printStackTrace();
            }

        }
    }
}

Semaphore

控制同时访问某个特定资源的线程数量,用在流量控制

 

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.Exchanger;

/**
 *@author Mark老师   享学课堂 https://enjoy.ke.qq.com 
 *
 *类说明:Exchange的使用
 */
public class UseExchange {
    private static final Exchanger<Set<String>> exchange 
        = new Exchanger<Set<String>>();

    public static void main(String[] args) {

        //第一个线程
        new Thread(new Runnable() {
            @Override
            public void run() {
                Set<String> setA = new HashSet<String>();//存放数据的容器
                try {
                    /*添加数据
                     * set.add(.....)
                     * */
                    setA = exchange.exchange(setA);//交换set
                    /*处理交换后的数据*/
                } catch (InterruptedException e) {
                }
            }
        }).start();

      //第二个线程
        new Thread(new Runnable() {
            @Override
            public void run() {
                Set<String> setB = new HashSet<String>();//存放数据的容器
                try {
                    /*添加数据
                     * set.add(.....)
                     * set.add(.....)
                     * */
                    setB = exchange.exchange(setB);//交换set
                    /*处理交换后的数据*/
                } catch (InterruptedException e) {
                }
            }
        }).start();

    }
}

 

Exchange

两个线程间的数据交换

 

posted @ 2020-12-25 17:10  清风商  阅读(94)  评论(0编辑  收藏  举报