• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
cuike
博客园    首页    新随笔    联系   管理    订阅  订阅
CS184.1X 计算机图形学导论(第三讲)

第一单元(介绍关于变换的数学知识)

L3V1:变换1:基本二维变换

模型坐标系,世界坐标系

1.缩放

Scale(规模,比例)

Sx表示在x方向上放大的倍数,Sy表示在y方向上放大的倍数,因此X坐标乘以Sx,Y坐标乘以Sy

缩放的你操作就是用x坐标和Y坐标分别乘以Sx和Sy的倒数。因此,如果放大了2倍,则其逆操作就是放大1/2倍,就是Sx和Sy的倒数

缩放矩阵是一个对角矩阵,将坐标乘以对应的缩放系数即可。

2.错切

Y坐标不发生变化,因此矩阵的第二行仍然是[0  1],乘起来仍然是y

x的值等于之前的x的值加上a乘以y坐标的值,x`=x+ay

这里为什么乘以a,因为这里是假设单位长度1,错切的变化量依赖于y坐标的值

错切矩阵为,错切的逆矩阵就是把a变成-a,错切公式不变。

3.旋转

该矩阵使得x方向和y方向上的变换叠加,相当于先在x方向上旋转再在y方向上旋转

二维的旋转变换,先在x轴上或先在y轴上可以交换顺序,但是三维不可以

因为数学表示在电脑上书写比较麻烦,故在纸上写下再拍照上传,得出旋转之后坐标的矩阵表示

课后测试题:

 

错误原因:在百度的时候没有加度,所以造成了错误,不用像答案把θ进行变换。

 

L3V2:变换1:组合变换

矩阵变换顺序不可交换!

组合变换矩阵的逆矩阵:最后一个变换的需要最先逆

 

对于旋转矩阵来说, R(A+B)=R(A)R(B),所以R(θ)=R(1)R(2)...R(179)R(180)=R(1+2+...+180)=R(((1+180)*180)/2)=R(16290),需要将旋转角再模360 (因为旋转x 度等价于旋转 x+360度)。 因此, 这里的旋转角就是 16290 mod 360=90 度

L3V3:变换1:三维旋转

旋转矩阵是正交的,R的转置乘以R等于单位矩阵E

三维绕哪个轴旋转,那个轴的坐标不变,即可得出结论(跟二维推导过程一样)

1>绕Z轴

 

2>绕X轴

 

3>绕Y轴(注意这里的形式稍有不同!!)三个矩阵均正交,乘以对应的转置矩阵为单位矩阵

点乘和叉乘的区别:

1.

点乘是一个数,公式:a . b = |a| * |b| * cosθ 
点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积;
点乘反映着两个向量的“相似度”,两个向量越“相似”,它们的点乘越大。

2.

a*b = |a| * |b| * sinθ ,结果是一个向量,遵循右手法则

旋转可以写成一般矩阵的形式,即某个矩阵M乘以b,下边是一般轴角表示的旋转公式,推导过程比较复杂

罗德里格斯旋转公式:(记住)???这里不大懂

反向旋转轴实际上将绕 a⃗ 的逆时针旋转改变为绕a⃗ 的顺时针旋转。因此,绕−a⃗ 的逆时针旋转和绕a⃗ 的顺时针旋转等效。

 

posted on 2018-09-12 21:44  momokeke  阅读(414)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3