线性规划的一般形式

数学规划的分类
1、线性规划:如果目标函数f(x)的约束条件均是决策变量的线性表达式、
2、非线性规划:当目标函数f(x)或者约束条件中有一个是决策变量x的非线性表达式。
3、整数规划:一类要求变量取整数值的数学规划。线性整数规划
4、0-1规划:整数变量的取值只能为0和1
线性规划问题的求解

Matlab 求解线性规划的函数
1、根据题目给的最值问题进行分析,写出符合题意要求的线性规划模型。
2、将模型转化为MATLAB标准化模型
- 列出决策变量,看总共有多少个决策变量,将每个变量前的系数写出来
- 找不等式约束前的常数项和后面的常数
- 找等式约束前的常数项和后面的常数
- 找出最大值和最小值的临界值
3、将找到的数值代入MATLAB
[x fval] = linprog(c, A, b, Aeq, beq, lb,ub
)
[x fval] = linprog(c, A, b, Aeq, beq, lb,ub, x0)
c是目标函数的系数向量
A是不等式约束Ax<=b的系数矩阵
b是不等式约束Ax<=b的常数项
Aeq是等式约束Aeq x=beq的系数矩阵,beq是等式约束Aeq x=beq的常数项
%% Matlab求解线性规划
% [x fval] = linprog(c, A, b, Aeq, beq, lb,ub, x0)
% c是目标函数的系数向量,A是不等式约束Ax<=b的系数矩阵,b是不等式约束Ax<=b的常数项
% Aeq是等式约束Aeq x=beq的系数矩阵,beq是等式约束Aeq x=beq的常数项
% lb是X的下限,ub是X的上限,X是向量[x1,x2,...xn]' , 即决策变量。
% 迭代的初始值为x0(一般不用给)
% 更多该函数的用法说明请看讲义
%% 例题1
c = [-5 -4 -6]'; % 加单引号表示转置
% c = [-5 -4 -6]; % 写成行向量也是可以的,不过不推荐,我们按照标准型来写看起来比较正规
A = [1 -1 1;
3 2 4;
3 2 0];
b = [20 42 30]';
lb = [0 0 0]';
[x fval] = linprog(c, A, b, [], [], lb) % ub我们直接不写,则意味着没有上界的约束
% x =
% 0
% 15.0000
% 3.0000
%
% fval =
% -78
⭐
最大化问题需要提前改成最小化问题
%% 例题3
c = [-2 -3 5]';
A = [-2 5 -1;
1 3 1];
b = [-10 12];
Aeq = ones(1,3);
beq = 7;
lb = zeros(3,1);
[x fval] = linprog(c, A, b, Aeq, beq, lb)
fval = -fval % 注意这个fval要取负号(原来是求最大值,我们添加负号变成了最小值问题)
% x =
% 6.4286
% 0.5714
% 0
% fval =
% -14.5714
% fval =
% 14.5714
典型例题代码
%% 生产决策问题
format long g %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
c = zeros(9,1); % 初始化目标函数的系数向量全为0
c(1) = 1.25 -0.25 -300/6000*5; % x1前面的系数是c1
c(2) = 1.25 -0.25 -321/10000*7;
c(3) = -250 / 4000 * 6;
c(4) = -783/7000*4;
c(5) = -200/4000 * 7;
c(6) = -300/6000*10;
c(7) = -321 / 10000 * 9;
c(8) = 2-0.35-250/4000*8;
c(9) = 2.8-0.5-321/10000*12-783/7000*11;
c = -c; % 我们求的是最大值,所以这里需要改变符号
% (2) 不等式约束
A = zeros(5,9);
A(1,1) = 5; A(1,6) = 10;
A(2,2) = 7; A(2,7) = 9; A(2,9) = 12;
A(3,3) = 6; A(3,8) = 8;
A(4,4) = 4; A(4,9) = 11;
A(5,5) = 7;
b = [6000 10000 4000 7000 4000]';
% (3) 等式约束
Aeq = [1 1 -1 -1 -1 0 0 0 0;
0 0 0 0 0 1 1 -1 0];
beq = [0 0]';%加上'代表是列向量
%(4)上下界
lb = zeros(9,1);
% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
fval = -fval
% fval =
% 1146.56650246305
%投料问题
format long g %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
a=[1.25 8.75 0.5 5.75 3 7.25]; % 工地的横坐标
b=[1.25 0.75 4.75 5 6.5 7.25]; % 工地的纵坐标
x = [5 2]; % 料场的横坐标
y = [1 7]; % 料场的纵坐标
c = []; % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
for j =1:2
for i = 1:6
c = [c; sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)]; % 每循环一次就在c的末尾插入新的元素
end
end
% (2) 不等式约束
A =zeros(2,12);
A(1,1:6) = 1;
A(2,7:12) = 1;
b = [20,20]';
% (3) 等式约束
Aeq = zeros(6,12);
for i = 1:6
Aeq(i,i) = 1; Aeq(i,i+6) = 1;
end
% Aeq = [eye(6),eye(6)] % 两个单位矩阵横着拼起来
beq = [3 5 4 7 6 11]'; % 每个工地的日需求量
%(4)上下界
lb = zeros(12,1);
% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
x = reshape(x,6,2) % 将x变为6行2列便于观察(reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1)
整数规划
整数规划:在线性规划的基础上 , 加⼊的决策变量需要取整数
[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
%% 背包问题(货车运送货物的问题)
c = -[540 200 180 350 60 150 280 450 320 120]; % 目标函数的系数矩阵(最大化问题记得加负号)
intcon=[1:10]; % 整数变量的位置(一共10个决策变量,均为0-1整数变量)
A = [6 3 4 5 1 2 3 5 4 2]; b = 30; % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)
Aeq = []; beq =[]; % 不存在线性等式约束
lb = zeros(10,1); % 约束变量的范围下限
ub = ones(10,1); % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
fval = -fval
%% 指派问题(选择队员去进行游泳接力比赛)
clear;clc
c = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]'; % 目标函数的系数矩阵(先列后行的写法)
intcon = [1:20]; % 整数变量的位置(一共20个决策变量,均为0-1整数变量)
% 线性不等式约束的系数矩阵和常数项向量(每个人只能入选四种泳姿之一,一共五个约束)
A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];
% A = zeros(5,20);
% for i = 1:5
% A(i, (4*i-3): 4*i) = 1;
% end
b = [1;1;1;1;1];
% 线性等式约束的系数矩阵和常数项向量 (每种泳姿有且仅有一人参加,一共四个约束)
Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];
% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)]; % 或者写成 repmat(eye(4),1,5)
beq = [1;1;1;1];
lb = zeros(20,1); % 约束变量的范围下限
ub = ones(20,1); % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
% reshape(x,4,5)'
% 0 0 0 1 甲自由泳
% 1 0 0 0 乙蝶泳
% 0 1 0 0 丙仰泳
% 0 0 1 0 丁蛙泳
% 0 0 0 0 戊不参加
灵敏度分析