多线程详解
多线程详解
线程、进程、多线程
程序,是指指令和数据的有序集合,其本身没有任何进行的含义,是一个静态的概念
进程,则是执行程序的一次执行过程,它是一个动态的概念,是系统资源分配的单位
通常在一个进程中可以包含若干个线程,当然一个进程中至少有一个线程,不然没有存在的意义,线程是CPU调度和执行的单位
注意:很多多线程是模拟出来的,真正的多线程是指有多个CPU,即多核,如服务器。如果是模拟出来的多线程,即在一个CPU的情况下,在同一个地点,CPU只能执行一个代码,因为切换的很快,所以就有同时执行的错局。
本章的核心概念
- 线程就是独立的执行路径
- 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程,gc线程
- main()称之为主线程,为系统的入口,用于执行整个程序
- 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为的干预的
- 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
- 线程会带来额外的开销,如cpu调度时间,并发控制开销
- 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致
创建线程
继承Thread类
创建线程方式一:继承Thread类,重写run方法,star开启线程
//创建线程方式一:继承Thread类,重写run方法,star开启线程
public class ThreadDemo extends Thread {
@Override
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println("--------------我在看代码------"+i);
}
}
public static void main(String[] args) {
//创建线程对象,star开启线程
ThreadDemo threadDemo = new ThreadDemo();
threadDemo.start();
//主线程
for (int i = 0; i < 2000; i++) {
System.out.println("这边是主线程----"+i);
}
}
}

实现Runnable接口
创建线程方式二:
-
先实现Runnable接口;
-
实现run方法编写线程方法体;
-
创建线程对象,执行线程需要丢入runnable接口实现类,start方法开启。
推荐使用Runnable对象,因为Java单继承的局限性
public class TestTread02 implements Runnable{
@Override
public void run() {
for (int i = 0; i < 200; i++) {
System.out.println("--------------我在看代码------"+i);
}
}
public static void main(String[] args) {
//创建runnable接口实现类对象
TestTread02 testTread02 = new TestTread02();
//创建线程对象,通过线程对象来开启我们的多线程,代理
// Thread thread = new Thread(testTread02);
// thread.start();
new Thread(testTread02).start();
for (int i = 0; i < 1000; i++) {
System.out.println("这边是主线程----"+i);
}
}
}
案例:网图下载
方式一:
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
//练习Thread,实现多线程同步下载图片
public class TestThread extends Thread{
private String url;
private String name;
public TestThread(String url,String name){
this.url = url;
this.name = name;
}
//下载图片线程的执行体
@Override
public void run() {
WebDownLoader webDownLoader = new WebDownLoader();
webDownLoader.downloader(url,name);
System.out.println("下载了文件名为:"+name);
}
public static void main(String[] args) {
TestThread t1 = new TestThread("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191700187-1468694455.png", "1.jpg");
TestThread t2 = new TestThread("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191715466-2054350322.png", "2.jpg");
TestThread t3 = new TestThread("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191918757-296455428.jpg", "3.jpg");
t1.start();
t2.start();
t3.start();
}
}
//下载器
class WebDownLoader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("io异常,downloader方法出现问题");
}
}
}
方式二:
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
//练习Thread,实现多线程同步下载图片
public class TestThread implements Runnable{
private String url;
private String name;
public TestThread(String url,String name){
this.url = url;
this.name = name;
}
//下载图片线程的执行体
@Override
public void run() {
WebDownLoader webDownLoader = new WebDownLoader();
webDownLoader.downloader(url,name);
System.out.println("下载了文件名为:"+name);
}
public static void main(String[] args) {
TestThread t1 = new TestThread("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191700187-1468694455.png", "1.jpg");
TestThread t2 = new TestThread("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191715466-2054350322.png", "2.jpg");
TestThread t3 = new TestThread("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191918757-296455428.jpg", "3.jpg");
new Thread(t1).start();
new Thread(t2).start();
new Thread(t3).start();
}
}
//下载器
class WebDownLoader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("io异常,downloader方法出现问题");
}
}
}


小结
继承Thread类
- 子类继承Thread类具备多线程能力
- 启动线程,子类对象.start()
- 不建议使用,避免OOP单继承局限性
实现Runnable接口
- 实现接口Runnable具有多线程能力
- 启动线程:传入目标对象+Thread对象.start()
- 推荐使用:避免单继承局限性,灵活方便,方便同一个对象被多个线程使用
//一份资源
StartThread station = new StartThread();
//多个代理
new Thread(station,"小明").start();
new Thread(station,"老师").start();
new Thread(station,"小红").start();
实现Callable接口
创建线程方式三:
- 实现Callable接口,需要返回值类型
- 重写call方法,需要抛出异常
- 创建目标对象
- 创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(1);
- 提交执行: Future
result1 = ser.submit(t1); - 获取结果: boolean r1 = result.get()
- 关闭服务:ser.shutdownNow();
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.concurrent.*;
public class TestCallable implements Callable<Boolean> {
private String url;
private String name;
public TestCallable(String url,String name){
this.url = url;
this.name = name;
}
@Override
public Boolean call(){
WebDownLoader webDownLoader = new WebDownLoader();
webDownLoader.downloader(url,name);
System.out.println("下载了文件名为:"+name);
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
TestCallable t1 = new TestCallable("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191700187-1468694455.png", "1.jpg");
TestCallable t2 = new TestCallable("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191715466-2054350322.png", "2.jpg");
TestCallable t3 = new TestCallable("https://img2024.cnblogs.com/blog/3561673/202411/3561673-20241125191918757-296455428.jpg", "3.jpg");
//创建执行服务:
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行:
Future<Boolean> result1 = ser.submit(t1);
Future<Boolean> result2 = ser.submit(t2);
Future<Boolean> result3 = ser.submit(t3);
//获取结果:
boolean rs1 = result1.get();
boolean rs2 = result2.get();
boolean rs3 = result3.get();
System.out.println(rs1);
System.out.println(rs2);
System.out.println(rs3);
//关闭服务:
ser.shutdownNow();
}
}
//下载器
class WebDownLoader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("io异常,downloader方法出现问题");
}
}
}

初识并发问题
//多个线程同时操作一个对象
//买火车票的例子
//发现问题:多个线程操作同一个资源的情况下,线程不安全,数据紊乱
public class TestThread4 implements Runnable{
//票数
private int ticketNums = 10;
@Override
public void run() {
while (true){
if (ticketNums<=0)
break;
//模拟延时
try {
Thread.sleep(200);
}catch (InterruptedException e){
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"-->拿到了第"+ticketNums--+"票");
}
}
public static void main(String[] args) {
TestThread4 ticket = new TestThread4();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
}

案例:龟兔赛跑
- 首先来个赛道距离,然后要离终点越来越近
- 判断比赛是否结束
- 打印出胜利者
- 龟兔赛跑开始
- 故事中是乌龟赢的,兔子需要睡觉,所以我们来模拟兔子睡觉
- 终于,乌龟赢得比赛
public class Race implements Runnable{
//胜利者
private static String winner;
@Override
public void run() {
for (int i = 0; i <= 100; i++) {
//模拟兔子休息
if (Thread.currentThread().getName().equals("兔子") && i%10==0 ){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//判断比赛是否结束
boolean flag = gameOver(i);
//如果比赛结束了就停止程序
if (flag){
break;
}
System.out.println(Thread.currentThread().getName()+"-->跑了"+i+"步");
}
}
//判断是否完成比赛
private boolean gameOver(int steps){
//判断是否有胜利者
if (winner!=null){
return true;
}else {
if (steps>=100){
winner = Thread.currentThread().getName();
System.out.println("Winner is "+winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
Race race = new Race();
new Thread(race,"兔子").start();
new Thread(race,"乌龟").start();
}
}

静态代理模块
静态代理模式总结:
- 真实对象和代理对象都要实现同一个接口
- 代理对象要代理真实角色
好处:
- 代理对象可以做很多真实对象做不了的事情
- 真实对象专注做自己的事情
public class StaticProxy {
public static void main(String[] args) {
WeddingCompanny weddingCompanny = new WeddingCompanny(new Man());
weddingCompanny.HappyMarry();
}
}
interface Marry{
void HappyMarry();
}
//真实角色
class Man implements Marry{
@Override
public void HappyMarry() {
System.out.println("Happy Marry!");
}
}
//代理角色
class WeddingCompanny implements Marry{
private Marry target;
public WeddingCompanny(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry();
after();
}
private void after() {
System.out.println("Marry之后,收尾款");
}
private void before() {
System.out.println("Marry之前,布置现场");
}
}
public class StaticProxy {
public static void main(String[] args) {
Man man = new Man();
new Thread(()->{
System.out.println("===============Thread的lambda===============");
}).start();
new WeddingCompanny(new Man()).HappyMarry();
}
}
interface Marry{
void HappyMarry();
}
//真实角色
class Man implements Marry{
@Override
public void HappyMarry() {
System.out.println("Happy Marry!");
}
}
//代理角色
class WeddingCompanny implements Marry{
private Marry target;
public WeddingCompanny(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry();
after();
}
private void after() {
System.out.println("Marry之后,收尾款");
}
private void before() {
System.out.println("Marry之前,布置现场");
}
}
Lamda表达式

为什么要是有lambda表达式?
- 避免匿名内部类定义过多
- 可以让你的代码看起来简洁
- 去掉了一堆没有意义的代码,只留下核心的逻辑

/*
推导lambda表达式
*/
public class TestLambda1 {
//3.静态内部类
static class Like2 implements ILike{
@Override
public void lambda() {
System.out.println("I Like lambda2222!");
}
}
public static void main(String[] args) {
ILike like = new Like();
like.lambda();
like = new Like2();
like.lambda();
//4.局部内部类
class Like3 implements ILike{
@Override
public void lambda() {
System.out.println("I Like lambda333333333!");
}
}
like = new Like3();
like.lambda();
//5.匿名内部类,没有类的名称,必须借助接口或者父类
like = new ILike() {
@Override
public void lambda() {
System.out.println("I Like lambda444444444444444444444444444!");
}
};
like.lambda();
//6.用lambda简化
like = ()->{
System.out.println("I Like lambda5555555555555555555555555555555555555555555555555!");
};
like.lambda();
}
}
//1.定义一个函数式接口
interface ILike{
void lambda();
}
//2.实现类
class Like implements ILike{
@Override
public void lambda() {
System.out.println("I Like lambda!");
}
}
public class TestLambda2 {
public static void main(String[] args) {
//1.lambda表示简化
ILove love = (int a)->{
System.out.println("I Love!-->"+a);
};
//简化1:参数类型
love = (a)->{
System.out.println("I Love ---->"+a);
};
//简化2:简化括号
love = a->{
System.out.println("I Love ---->"+a);
};
//简化3:去掉花括号
love = a-> System.out.println("I Love ---->"+a);
/*
总结:
1. lambda表达式只能有一行代码的情况下才能简化成为一行,如果有多行,那么就用代码块包裹
2. 前提是函数式接口
3. 多个参数也可以去掉参数类型,要去掉就都去掉,必须加上括号
*/
love.love(52);
}
}
interface ILove{
void love(int a);
}
总结:
1. lambda表达式只能有一行代码的情况下才能简化成为一行,如果有多行,那么就用代码块包裹
2. 前提是函数式接口
3. 多个参数也可以去掉参数类型,要去掉就都去掉,必须加上括号
线程状态(五大状态)

线程方法

线程停止

//1.建议线程正常停止-->利用次数,不建议死循环
//2.建议使用标志位-->设置一个标志位
//3.不要使用stop或者destory等过时或者JDK不建议使用的方法
public class TestStop implements Runnable{
//1.设置一个标识符
private boolean flag = true;
@Override
public void run() {
int i = 0;
while (flag){
System.out.println("run...Thread "+i);
}
}
//2.设置一个公开的方法停止线程,转换标志位
public void stop(){
this.flag = false;
}
public static void main(String[] args) {
TestStop testStop = new TestStop();
new Thread(testStop).start();
for (int i = 0; i < 1000; i++) {
System.out.println("main "+i);
if (i==900){
//调用stop方法切换标志位,让线程停止
testStop.stop();
System.out.println("线程该结束了 "+i);
}
}
}
}
线程休眠_sleep

import java.text.SimpleDateFormat;
import java.util.Date;
//模拟倒计时
public class TestSleep2 {
//模拟倒计时
public static void tenDown() throws InterruptedException {
int num = 10;
while (true){
Thread.sleep(1000);
System.out.println(num--);
if (num==0){
break;
}
}
}
public static void main(String[] args) {
try {
tenDown();
} catch (InterruptedException e) {
e.printStackTrace();
}
//打印系统当前时间
Date startTime = new Date(System.currentTimeMillis()); //获取当前时间
while (true) {
try {
Thread.sleep(1000);
System.out.println(new SimpleDateFormat("HH:mm:ss").format(startTime));
startTime = new Date(System.currentTimeMillis()); //更新当前时间
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
线程礼让_yield

//礼让不一定成功,看CPU心情
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield();
System.out.println(Thread.currentThread().getName()+"线程停止执行");
}
}
线程强制执行_join

public class TestJoin implements Runnable{
@Override
public void run() {
for (int i = 0; i < 1000; i++) {
System.out.println("线程vip来了! "+i);
}
}
public static void main(String[] args) throws InterruptedException {
//启动线程
TestJoin testJoin = new TestJoin();
Thread thread= new Thread(testJoin);
thread.start();
//主线程
for (int i = 0; i < 500; i++) {
if (i==200){
thread.join();
}
System.out.println("main "+i);
}
}
}
观测线程状态

public class TestState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("/////////");
});
//观察状态
Thread.State state = thread.getState();
System.out.println(state);//NEW
//观察启动后
thread.start();//启动线程
state = thread.getState();
System.out.println(state);//RUN
//只要线程不终止,就一直输出状态
while (state != Thread.State.TERMINATED){
Thread.sleep(1000);
state = thread.getState();//更新线程状态
System.out.println(state);
}
}
}
死亡后的线程不能再次启动!!!线程只能启动一次
线程的优先级

public class TestPriority {
public static void main(String[] args) {
//主线程默认优先级
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
Thread t6 = new Thread(myPriority);
//先设置优先级,再启动
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(Thread.MAX_PRIORITY);
t4.start();
// t5.setPriority(-1);
// t5.start();
//
// t6.setPriority(11);
// t6.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
}
}
先设置优先级再启动
优先级低只是意味着获取调度的概率低,并不是优先级低就不会被调用了,这都是看CPU的调度
守护线程

//上帝守护你
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true); //默认是false表示是用户线程,正常的线程都是用户线程
thread.start();//上帝守护线程开启
new Thread(you).start(); // 你 用户线程启动...
}
}
//上帝
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("God保佑着你!");
}
}
}
//你
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("你一生都开心的活着!");
}
System.out.println("==============goodvye! world!===============");
}
}
线程同步机制
并发:同一个对象被多个线程同时操作

形成条件:队列 + 锁

三大不安全案例
不安全的买票
//不安全的买票
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
new Thread(buyTicket,"小明").start();
new Thread(buyTicket,"小红").start();
new Thread(buyTicket,"黄牛党").start();
}
}
class BuyTicket implements Runnable{
private int ticketNum = 10;
boolean flag = true;
@Override
public void run() {
//买票
while (flag){
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private void buy() throws InterruptedException {
//判断是否有票
if (ticketNum<=0){
flag = false;
return;
}
//模拟延时
Thread.sleep(100);
//买票
System.out.println(Thread.currentThread().getName()+"-->拿到了第 "+ ticketNum-- +"票");
}
}
不安全的取钱
//不安全的取钱
//两个人去银行取钱,账户
public class UnsafeBank {
public static void main(String[] args) {
//账户
Account account = new Account(100, "资金");
Drawing you = new Drawing(account, 50, "你");
Drawing mom = new Drawing(account, 50, "母亲");
you.start();
mom.start();
}
}
//账户
class Account {
int money; //余额
String name; //卡名
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
//银行:模拟取款
class Drawing extends Thread{
Account account; //账户
int drawingMoney; //取了多少钱
int nowMoney; //现在手里还有多少钱
public Drawing(Account account,int drawingMoney,String name){
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
//判断有没有钱
if (account.money-drawingMoney<=0){
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//sleep可以放大问题的发生性
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内余额
account.money = account.money - drawingMoney;
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
// this.getName()相当于 Thread.currentThread().getName()
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
}
不安全的集合
import java.util.ArrayList;
import java.util.List;
public class UnsafeList {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
同步方法及同步块
线程同步

同步方法

同步方法弊端:
方法里面有需要修改的内容才需要锁。锁的太多,浪费资源
例如:一般只读的代码不需要锁,修改的代码才需要锁

锁谁取决于你们同时操作的对象是谁(哪个类的属性会发生变化,就锁哪个类的对象)
同步方法 synchronized
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
new Thread(buyTicket,"小明").start();
new Thread(buyTicket,"小红").start();
new Thread(buyTicket,"黄牛党").start();
}
}
class BuyTicket implements Runnable{
private int ticketNum = 10;
boolean flag = true;
@Override
public void run() {
//买票
while (flag){
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//synchronized 同步方法,锁的是this
private synchronized void buy() throws InterruptedException {
//判断是否有票
if (ticketNum<=0){
flag = false;
return;
}
//模拟延时
Thread.sleep(100);
//买票
System.out.println(Thread.currentThread().getName()+"-->拿到了第 "+ ticketNum-- +"票");
}
}
同步方法块 synchronized(){}
//两个人去银行取钱,账户
public class UnsafeBank {
public static void main(String[] args) {
//账户
Account account = new Account(1000, "资金");
Drawing you = new Drawing(account, 50, "你");
Drawing mom = new Drawing(account, 50, "母亲");
you.start();
mom.start();
}
}
//账户
class Account {
int money; //余额
String name; //卡名
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
//银行:模拟取款
class Drawing extends Thread{
Account account; //账户
int drawingMoney; //取了多少钱
int nowMoney; //现在手里还有多少钱
public Drawing(Account account,int drawingMoney,String name){
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
//锁谁取决于你们同时操作的对象是谁(哪个类的属性会发生变化,就锁哪个类的对象)
synchronized (account){
//判断有没有钱
if (account.money-drawingMoney<=0){
System.out.println(Thread.currentThread().getName()+"钱不够,取不了");
return;
}
//sleep可以放大问题的发生性
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内余额
account.money = account.money - drawingMoney;
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
// this.getName()相当于 Thread.currentThread().getName()
System.out.println(this.getName()+"手里的钱:"+nowMoney);
}
}
}
import java.util.ArrayList;
import java.util.List;
public class UnsafeList {
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
synchronized (list){
list.add(Thread.currentThread().getName());
}
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
CopyOnWriteArrayList
import java.util.concurrent.CopyOnWriteArrayList;
//测试JUC安全类型的集合
public class TestJUC {
public static void main(String[] args) {
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
死锁


public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0, "灰姑娘");
Makeup g2 = new Makeup(1, "白雪公主");
g1.start();
g2.start();
}
}
//口红
class LipStick{
}
//镜子
class Mirror{
}
class Makeup extends Thread{
//需要的资源只有一份,用static来保证只有一份
static LipStick lipStick = new LipStick();
static Mirror mirror = new Mirror();
int choice; //选择
String girlName; //使用的人
Makeup(int choice,String girlName){
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//化妆,互相持有对方的锁,就是需要拿到对方的资源
private void makeup() throws InterruptedException {
if (choice==0){
synchronized (lipStick){ //获得口红的锁
System.out.println(this.girlName+"获得口红的锁");
Thread.sleep(1000);
}
synchronized (mirror){ //获得镜子的锁
System.out.println(this.girlName+"获得镜子的锁");
}
}else {
synchronized (mirror){ //获得镜子的锁
System.out.println(this.girlName+"获得镜子的锁");
Thread.sleep(1000);
}
synchronized (lipStick){ //获得口红的锁
System.out.println(this.girlName+"获得口红的锁");
}
}
}
}
Lock锁

import java.util.concurrent.locks.ReentrantLock;
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable{
int ticketNum = 10;
//定义lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true){
lock.lock();
try {
if (ticketNum<=0){
return;
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNum--);
}finally {
//解锁
lock.unlock();
}
}
}
}

线程协作


生产者消费者问题
管程法

//测试: 生产者消费者模型-->利用缓冲区解决:管程法
//生产者,消费者,产品,缓冲区
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread{
SynContainer container;
public Productor(SynContainer container){
this.container = container;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("生产了"+i+"只鸡");
container.push(new Chicken(i));
}
}
}
//消费者
class Consumer extends Thread{
SynContainer container;
public Consumer(SynContainer container){
this.container = container;
}
//消费
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了-->"+container.pop().id+"只鸡");
}
}
}
//产品
class Chicken{
int id;
public Chicken(int id){
this.id = id;
}
}
//缓冲区
class SynContainer{
//需要一个容器大小
Chicken[] chickens = new Chicken[100];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken){
//如果容器满了,就需要等消费者消费
if (count==chickens.length){
//通知消费者消费,生产者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有满,我们就需要丢入产品
chickens[count] = chicken;
count++;
//可以通知消费之消费了
this.notifyAll();
}
//消费者消费产品
public synchronized Chicken pop(){
//判断能否消费
if (count==0){
//通知生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果可以消费
count--;
Chicken chicken = chickens[count];
//吃完了,通知生产者生产
this.notifyAll();
return chicken;
}
}
信号灯法
//测试生产者消费者问题2:信号灯法,标志位解决
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者-->演员
class Player extends Thread{
TV tv;
public Player(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i%2==0){
this.tv.play("快乐大本营播放中");
}else {
this.tv.play("抖音");
}
}
}
}
//消费者-->观众
class Watcher extends Thread{
TV tv;
public Watcher(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品-->节目
class TV{
//演员表演,观众等待
//观众观看,演员等待
String voice; //表演的节目
boolean flag = true;
//表演
public synchronized void play(String voice){
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了:"+voice);
//通知观众观看
this.voice = voice;
this.notifyAll();
this.flag = !this.flag;
}
//观看
public synchronized void watch(){
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了:"+voice);
//通知演员表演
this.notifyAll();
this.flag = !this.flag;
}
}
线程池


import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
// newFixedThreadPool 参数为:线程大小
ExecutorService service = Executors.newFixedThreadPool(10);
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.关闭连接
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
总结
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
//回顾总结线程的创建
public class ThreadNew {
public static void main(String[] args) {
new MyThread1().start();
new Thread(new MyThread2()).start();
FutureTask<Integer> futureTask = new FutureTask<Integer>(new MyThread3());
new Thread(futureTask).start();
try {
futureTask.get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}
class MyThread1 extends Thread{
@Override
public void run() {
System.out.println("MyThread1---Thread");
}
}
class MyThread2 implements Runnable{
@Override
public void run() {
System.out.println("MyThread2--------->Runnable");
}
}
class MyThread3 implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("MyThread3!!!!!!!Callable");
return 110;
}
}

浙公网安备 33010602011771号