性质(MST性质)
(1)MST性质
最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。
(2)MST性质的证明
为方便说明,先作以下约定:
①将集合U中的顶点看作是红色顶点,②而V-U中的顶点看作是蓝色顶点,③连接红点和蓝点的边看作是紫色边,④权最小的紫边称为轻边(即权重最"轻"的边)。于是,MST性质中所述的边(u,v)就可简称为轻边。
用反证法证明MST性质:
假设G中任何一棵MST都不含轻边(u,v)。则若T为G的任意一棵MST,那么它不含此轻边。
根据树的定义,则T中必有一条从红点u到蓝点v的路径P,且P上必有一条紫边(u',v')连接红点集和蓝点集,否则u和v不连通。当把轻边(u,v)加入树T时,该轻边和P必构成了一个回路。删去紫边(u',v')后回路亦消除,由此可得另一生成树T'。
T'和T的差别仅在于T'用轻边(u,v)取代了T中权重可能更大的紫边(u',v')。因为w(u,v)≤w(u',v'),所以
w(T')=w(T)+w(u,v)-w(u',v')≤w(T)
即T'是一棵比T更优的MST,所以T不是G的MST,这与假设矛盾。
所以,MST性质成立。
编辑本段MST的一般算法描述
求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。
当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。
用伪代码可将算法描述为:
GenerieMST(G){//求G的某棵MST
T〈-¢; //T初始为空,是指顶点集和边集均空
while T未形成G的生成树 do{
找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集
T=T∪{(u,v)}; //加入安全边,扩充T
}
return T; //T为生成树且是G的一棵MST
}
注意:
下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。
为简单起见,下面用序号0,1,…,n-1来表示顶点集,即是:
V(G)={0,1,…,n-1},
G中边上的权解释为长度,并设T=(U,TE)。
求最小生成树的具体算法(pascal):
A.
Prim算法:
procedure prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]
:=cost[v0,i];
closest:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点 k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k 加入生成树}
{生成树中增加一条新的边 k 到 closest[k]}
{修正各点的 lowcost 和 closest 值}
for j:=1 to n do
if cost[k,j]<lowcost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;
B.Kruskal算法:(贪心)
按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点 v 所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset) do inc(i);
if i<=n then find:=i else find:=0;
end;
procedure kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset:=i;{初始化定义 n 个集合,第 I个集合包含一个元素 I}
p:=n-1; q:=1; tot:=0; {p 为尚待加入的边数,q 为边集指针}
sort;
{对所有边按权值递增排序,存于 e中,e.v1 与 e.v2 为边 I 所连接的两个顶点的
序号,e.len 为第 I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset:=vset+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
C语言完整代码如下(已编译通过):
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#define MAX_VERTEX_NUM 20
#define OK 1
#define ERROR 0
#define MAX 1000
typedef struct Arcell
{
double adj;
}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef struct
{
char vexs[MAX_VERTEX_NUM]; //节点数组
AdjMatrix arcs; //邻接矩阵
int vexnum,arcnum; //图的当前节点数和弧数
}MGraph;
typedef struct Pnode //用于普利姆算法
{
char adjvex; //节点
double lowcost; //权值
}Pnode,Closedge[MAX_VERTEX_NUM]; //记录顶点集U到V-U的代价最小的边的辅助数组定义
typedef struct Knode //用于克鲁斯卡尔算法中存储一条边及其对应的2个节点
{
char ch1; //节点1
char ch2; //节点2
double value; //权值
}Knode,Dgevalue[MAX_VERTEX_NUM];
//-----------------------------------------------------------------------------------
int CreateUDG(MGraph & G,Dgevalue & dgevalue);
int LocateVex(MGraph G,char ch);
int Minimum(MGraph G,Closedge closedge);
void MiniSpanTree_PRIM(MGraph G,char u);
void Sortdge(Dgevalue & dgevalue,MGraph G);
//-----------------------------------------------------------------------------------
int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵
{
int i,j,k;
cout<<"请输入图中节点个数和边/弧的条数:";
cin>>G.vexnum>>G.arcnum;
cout<<"请输入节点:";
for(i=0;i<G.vexnum;++i)
cin>>G.vexs[i];
for(i=0;i<G.vexnum;++i) //初始化数组
{
for(j=0;j<G.vexnum;++j)
{
G.arcs[i][j].adj=MAX;
}
}
cout<<"请输入一条边依附的定点及边的权值:"<<endl;
for(k=0;k<G.arcnum;++k)
{
cin >> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value;
i = LocateVex(G,dgevalue[k].ch1);
j = LocateVex(G,dgevalue[k].ch2);
G.arcs[i][j].adj = dgevalue[k].value;
G.arcs[j][i].adj = G.arcs[i][j].adj;
}
return OK;
}
int LocateVex(MGraph G,char ch) //确定节点ch在图G.vexs中的位置
{
int a ;
for(int i=0; i<G.vexnum; i++)
{
if(G.vexs[i] == ch)
a=i;
}
return a;
}
void MiniSpanTree_PRIM(MGraph G,char u) //普利姆算法求最小生成树
{
int i,j,k;
Closedge closedge;
k = LocateVex(G,u);
for(j=0; j<G.vexnum; j++)
{
if(j != k)
{
closedge[j].adjvex = u;
closedge[j].lowcost = G.arcs[k][j].adj;
}
}
closedge[k].lowcost = 0;
for(i=1; i<G.vexnum; i++)
{
k = Minimum(G,closedge);
cout<<"("<<closedge[k].adjvex<<","<<G.vexs[k]<<","<<closedge[k].lowcost<<")"<<endl;
closedge[k].lowcost = 0;
for(j=0; j<G.vexnum; ++j)
{
if(G.arcs[k][j].adj < closedge[j].lowcost)
{
closedge[j].adjvex = G.vexs[k];
closedge[j].lowcost= G.arcs[k][j].adj;
}
}
}
}
int Minimum(MGraph G,Closedge closedge) //求closedge中权值最小的边,并返回其顶点在vexs中的位置
{
int i,j;
double k = 1000;
for(i=0; i<G.vexnum; i++)
{
if(closedge[i].lowcost != 0 && closedge[i].lowcost < k)
{
k = closedge[i].lowcost;
j = i;
}
}
return j;
}
void MiniSpanTree_KRSL(MGraph G,Dgevalue & dgevalue) //克鲁斯卡尔算法求最小生成树
{
int p1,p2,i,j;
int bj[MAX_VERTEX_NUM]; //标记数组
for(i=0; i<G.vexnum; i++) //标记数组初始化
bj[i]=i;
Sortdge(dgevalue,G); //将所有权值按从小到大排序
for(i=0; i<G.arcnum; i++)
{
p1 = bj[LocateVex(G,dgevalue[i].ch1)];
p2 = bj[LocateVex(G,dgevalue[i].ch2)];
if(p1 != p2)
{
cout<<"("<<dgevalue[i].ch1<<","<<dgevalue[i].ch2<<","<<dgevalue[i].value<<")"<<endl;
for(j=0; j<G.vexnum; j++)
{
if(bj[j] == p2)
bj[j] = p1;
}
}
}
}
void Sortdge(Dgevalue & dgevalue,MGraph G) //对dgevalue中各元素按权值按从小到大排序
{
int i,j;
double temp;
char ch1,ch2;
for(i=0; i<G.arcnum; i++)
{
for(j=i; j<G.arcnum; j++)
{
if(dgevalue[i].value > dgevalue[j].value)
{
temp = dgevalue[i].value;
dgevalue[i].value = dgevalue[j].value;
dgevalue[j].value = temp;
ch1 = dgevalue[i].ch1;
dgevalue[i].ch1 = dgevalue[j].ch1;
dgevalue[j].ch1 = ch1;
ch2 = dgevalue[i].ch2;
dgevalue[i].ch2 = dgevalue[j].ch2;
dgevalue[j].ch2 = ch2;
}
}
}
}
void main()
{
int i,j;
MGraph G;
char u;
Dgevalue dgevalue;
CreateUDG(G,dgevalue);
cout<<"图的邻接矩阵为:"<<endl;
for(i=0; i<G.vexnum; i++)
{
for(j=0; j<G.vexnum; j++)
cout << G.arcs[i][j].adj<<" ";
cout<<endl;
}
cout<<"=============普利姆算法===============\n";
cout<<"请输入起始点:";
cin>>u;
cout<<"构成最小代价生成树的边集为:\n";
MiniSpanTree_PRIM(G,u);
cout<<"============克鲁斯科尔算法=============\n";
cout<<"构成最小代价生成树的边集为:\n";
MiniSpanTree_KRSL(G,dgevalue);
}