UVA 10909 - Lucky Number(树状数组)
UVA 10909 - Lucky Number
题意:问一个数字是否能由两个lucky num构造出来,lucky num依据题目中的定义
思路:利用树状数组找前k大的方法能够构造出lucky num的序列,然后每次查找n,就从n / 2開始往下查找就可以
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2000001;
int bit[N], tmp[N], lucky[N], vis[N], tot;
int lowbit(int x) {
return (x&(-x));
}
void add(int x, int v) {
while (x < N) {
bit[x] += v;
x += lowbit(x);
}
}
int n;
int find(int x) {
int ans = 0, num = 0;
for (int i = 20; i >= 0; i--) {
ans += (1<<i);
if (ans >= N || num + bit[ans] >= x)
ans -= (1<<i);
else num += bit[ans];
}
return ans + 1;
}
void solve(int n) {
if (n % 2 == 0) {
int i = upper_bound(lucky + 1, lucky + tot + 1, n / 2) - lucky - 1;
for (; i >= 1; i--) {
if (vis[n - lucky[i]]) {
printf("%d is the sum of %d and %d.\n", n, lucky[i], n - lucky[i]);
return;
}
}
}
printf("%d is not the sum of two luckies!\n", n);
}
int main() {
tot = 2000000;
for (int i = 1; i <= tot; i += 2)
add(i, 1);
tot /= 2;
for (int i = 2; ; i++) {
int len = find(i);
if (tot < len) break;
for (int j = len; j <= tot; j += len)
tmp[j] = find(j);
for (int j = len; j <= tot; j += len)
add(tmp[j], -1);
tot = tot - tot / len;
}
for (int i = 1; i <= tot; i++) {
lucky[i] = find(i);
vis[lucky[i]] = 1;
}
while (~scanf("%d", &n)) {
solve(n);
}
return 0;
}

浙公网安备 33010602011771号