URAL 1528 Sequence
SequenceCrawling in process... Crawling failed Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
You are given a recurrent formula for a sequence 
f: 
f(n) = 1 + f(1)g(1) +
f(2)g(2) + … + f(n−1)g(n−1),
where g is also a recurrent sequence given by formula
g(n) = 1 + 2g(1) + 2g(2) + 2g(3) + … + 2g(n−1) −
g(n−1)g(n−1). 
It is known that f(1) = 1, g(1) = 1. Your task is to find
f(n) mod p. 
Input
The input consists of several cases. Each case contains two numbers on a single line. These numbers are
n (1 ≤ n ≤ 10000) and p (2 ≤ p ≤ 2·109). The input is terminated by the case with
n = p = 0 which should not be processed. The number of cases in the input does not exceed 5000.
Output
Output for each case the answer to the task on a separate line.
Sample Input
| input | output | 
|---|---|
| 1 2 2 11 0 0 | 1 2 | 
题意:如题。
思路:哇。
一開始看错题啦。
不难发现f(n)的通项啦。
AC代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <stdlib.h>
using namespace std;
int main(){
    int n,p;
    while(~scanf("%d%d",&n,&p)){
        if(n==0&&p==0) break;
        long long ans=1;
        for(int i=2;i<=n;i++){
            ans*=i%p;
            ans%=p;
        }
        printf("%d\n",ans%p);
    }
    return 0;
}
   
 
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号