CodeForces 197B Limit
Description
You are given two polynomials:
- P(x) = a0·xn + a1·xn - 1 + ... + an - 1·x + an and
- Q(x) = b0·xm + b1·xm - 1 + ... + bm - 1·x + bm.
Calculate limit .
Input
The first line contains two space-separated integers n and m (0 ≤ n, m ≤ 100) — degrees of polynomials P(x) and Q(x)correspondingly.
The second line contains n + 1 space-separated integers — the factors of polynomial P(x): a0, a1, ..., an - 1, an( - 100 ≤ ai ≤ 100, a0 ≠ 0).
The third line contains m + 1 space-separated integers — the factors of polynomial Q(x): b0, b1, ..., bm - 1, bm( - 100 ≤ bi ≤ 100, b0 ≠ 0).
Output
If the limit equals + ∞, print "Infinity" (without quotes). If the limit equals - ∞, print "-Infinity" (without the quotes).
If the value of the limit equals zero, print "0/1" (without the quotes).
Otherwise, print an irreducible fraction — the value of limit , in the format "p/q" (without
the quotes), where p is the — numerator, q(q > 0) is the denominator
of the fraction.
Sample Input
2 1 1 1 1 2 5
Infinity
1 0 -1 3 2
-Infinity
0 1 1 1 0
0/1
2 2 2 1 6 4 5 -7
1/2
1 1 9 0 -5 2
-9/5
Hint
题意:求极限。
题解:首先
P(x) = a0·xn + a1·xn - 1 + ... + an - 1·x + an and
Q(x) = b0·xm + b1·xm - 1 + ... + bm - 1·x + bm.
的极限P(x)=a0*x^n,Q(x)=b0*x^m,x->INF.
然后直接比較即可了。
注:gcd(-2,4)=-2.
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define N 110
int n,m,a[N],b[N];
int gcd(int a,int b) {
return b==0?a:gcd(b,a%b);
}
int main() {
//printf("%d\n",gcd(-2,4));
while(cin>>n>>m) {
n++,m++;
for(int i=0; i<n; i++) {
scanf("%d",&a[i]);
}
for(int j=0; j<m; j++) {
scanf("%d",&b[j]);
}
if(n==m) {
if(b[0]<0) {
b[0]=-b[0];
a[0]=-a[0];
}
int x=gcd(a[0],b[0]);
if(x<0)x=-x;
printf("%d/%d\n",a[0]/x,b[0]/x);
} else if(n>m) {
if(a[0]>0&&b[0]>0||(a[0]<0&&b[0]<0))printf("Infinity\n");
else printf("-Infinity\n");
} else {
printf("0/1\n");
}
}
}

浙公网安备 33010602011771号