ForkIn VS Stream
forkin分支合并
将一个大任务分割成若干小任务,最终汇总每个小任务的结果得到这个大任务的结果
并行执行任务,提高效率,大数据量。
类似MapReduce大任务拆分为小任务
forkjoin:工作窃取,维护的双端队列
测试1
import java.util.concurrent.ExecutionException; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.ForkJoinTask; import java.util.concurrent.RecursiveTask; import java.util.stream.LongStream; //大数据量的时候使用 public class ForkInVSStreamTest { public static void main(String[] args) throws ExecutionException, InterruptedException { test01(); test02(); test03(); } //普通的 public static void test01() { long sum = 0L; long start = System.currentTimeMillis(); for (long i = 1; i < 10_0000_0000L; i++) { sum += i; } long end = System.currentTimeMillis(); System.out.println("sum=" + sum + "时间: " + (end - start)); } //使用forkjion的人员 public static void test02() throws ExecutionException, InterruptedException { long start = System.currentTimeMillis(); ForkJoinPool forkJoinPool = new ForkJoinPool(); ForkJoinTask<Long> tast = new Sum(0L, 10_0000_0000L); ForkJoinTask<Long> submit = forkJoinPool.submit(tast);//提交任务 Long sum = submit.get(); long end = System.currentTimeMillis(); System.out.println("forkin=》sum=" + sum + "时间: " + (end - start)); } //使用Stream计算的人员 public static void test03() { long start = System.currentTimeMillis(); //Stream 并行流 //求和 long sum = LongStream.rangeClosed(0L, 10_0000_0000) .parallel() .reduce(0, Long::sum); long end = System.currentTimeMillis(); System.out.println("stream=》sum=" + sum + "时间: " + (end - start)); } } class Sum extends RecursiveTask<Long> { private long start; //1 private long end; //1990900000 //临界值 private long temp = 10000L; public Sum(long start, long end) { this.start = start; this.end = end; } //计算方法 @Override protected Long compute() { if ((end - start) < temp) { long sum = 0L; for (long i = start; i < end; i++) { sum += i; } return sum; } else { //分支合并计算 forkjoin long middle = (start + end) / 2; //中间值 Sum sum1 = new Sum(start, middle); sum1.fork(); //拆分任务,把任务压入线程队列 Sum sum2 = new Sum(middle + 1, end); sum2.fork();//拆分任务,把任务压入线程队列 return sum1.join() + sum2.join(); } } }