一、实验结论:

1.实验任务5:

vectorint.hpp:

#include <iostream>
#include <iomanip>
using namespace std;

class vectorint
{
public:
    vectorint(int n) : size{n}
    {
        cout << "constructor 1 called." << endl;
        p = new int[size];
    }
    vectorint(int n, int value) : size{n}
    {
        cout << "constructor 2 called." << endl;
        p = new int[size];
        int i;
        for (i = 0; i < size; i++)
            p[i] = value;
    }
    ~vectorint()
    {
        cout << "destructor called." << endl;
        delete[] p;
    }
    int &at(int index)
    {
        if (index >= 0 && index < size)
            return p[index];
    }
    vectorint(const vectorint &v1) : size{v1.size}
    {
        cout << "copy constructor called." << endl;
        p = new int[size];
        int i;
        for (i = 0; i < size; i++)
            p[i] = v1.p[i];
    }

    int get_size() const { return size; }

    friend int output(vectorint &v)
    {
        int i;
        for (i = 0; i < v.size; i++)
            cout << v.p[i] << " ";
        cout << endl;
    }

private:
    int size;
    int *p;
};

task5.cpp:

#include <iostream>
#include "vectorint.hpp"

void test() {
    using namespace std;

    int n;
    cin >> n;
    
    vectorint x1(n);
    for(auto i = 0; i < n; ++i)
        x1.at(i) = i*i;

    output(x1);

    vectorint x2(n, 42);
    vectorint x3(x2);

    output(x2);
    output(x3);

    x2.at(0) = 77;

    output(x2);
    output(x3);
}

int main() {
    test();
}

运行结果:

 

2.实验任务6:

Matrix.hpp:

#pragma once
#include <iostream>
using namespace std;

class Matrix
{
public:
    Matrix(int n) : lines{n}, cols{n} {
        p = new double*[lines];
        int i;
        for (i = 0; i < lines;i++)
            p[i] = new double[cols];
    } // 构造函数,构造一个n*n的矩阵

    Matrix(int n, int m) : lines{n}, cols{m} {
        p = new double *[lines];
        int i;
        for (i = 0; i < lines; i++)
            p[i] = new double[cols];
    } // 构造函数,构造一个n*m的矩阵

    Matrix(const Matrix &X)
    {
        lines = X.lines;
        cols = X.cols;
        p = new double *[lines];
        int i,j;
        for (i = 0; i < lines; i++)
            p[i] = new double[cols];
        for (i = 0; i < lines; i++)
            for (j = 0; j < cols; j++)
                p[i][j] = X.p[i][j];
    } // 复制构造函数,使用已有的矩阵X构造

    ~Matrix() { delete[] p; } // 析构函数

    void set(const double *pvalue)
    {
        int i, j;
        for (i = 0; i < lines; i++)
            for (j = 0; j < cols; j++)
                p[i][j] = *(pvalue + i * cols + j);
    } // 用pvalue指向的连续内存块数据按行为矩阵赋值

    void set(int i, int j, int value)
    {
        p[i][j] = value;
    } // 设置矩阵第i行第j列元素值为value

    double &at(int i, int j)
    {
        return p[i][j];
    } // 返回矩阵第i行第j列元素的引用
    double at(int i, int j) const
    {
        return p[i][j];
    } // 返回矩阵第i行第j列元素的值

    int get_lines() const
    {
        return lines;
    } // 返回矩阵行数

    int get_cols() const
    {
        return cols;
    } // 返回矩列数

    void print() const
    {
        int i, j;
        for (i = 0; i < lines; i++)
            {
                for (j = 0; j < cols; j++)
                cout << p[i][j] << " ";
            cout << endl;
            }
            cout << endl;
    } // 按行打印输出矩阵

private:
    int lines; // 矩阵行数
    int cols;  // 矩阵列数
    double **p; // 指向存放矩阵数据的内存块的首地址
};

task6.cpp(数据1):

#include <iostream>
#include "Matrix2.hpp"

void test()
{
    using namespace std;

    double x[] = {1, 2, 3, 4, 5, 6};

    Matrix m1(3, 2); // 创建一个3×2的矩阵
    m1.set(x);       // 用一维数组x的值按行为矩阵m1赋值
    m1.print();      // 打印矩阵m1的值
    cout << "the first line is: " << endl;
    cout << m1.at(0, 0) << " " << m1.at(0, 1) << endl; // 输出矩阵m1第1行两个元素的值
    cout << endl;

    Matrix m2(2, 3);
    m2.set(x);
    m2.print();
    cout << "the first line is: " << endl;
    cout << m2.at(0, 0) << " " << m2.at(0, 1) << " " << m2.at(0, 2) << endl;
    cout << endl;

    Matrix m3(m2);     // 用矩阵m2构造新的矩阵m3
    m3.set(0, 0, 999); // 将矩阵m3第0行第0列元素值设为999
    m3.print();
}

int main()
{
    test();
}

数据1运行结果:

task6.cpp(数据2,只展示改动部分代码):

    double x[] = {1, 2, 3, 4, 5, 6,7,8,9,10,11,12};

    Matrix m1(4, 3); // 创建一个4×3的矩阵
    m1.set(x);       // 用一维数组x的值按行为矩阵m1赋值
    m1.print();      // 打印矩阵m1的值
    cout << "the first line is: " << endl;
    for (int i = 0; i < 3;i++)
        cout << m1.at(0, i) << " " ; // 输出矩阵m1第1行3个元素的值
    cout << endl;

    Matrix m2(2, 6);
    m2.set(x);
    m2.print();
    cout << "the first line is: " << endl;
    for(int i = 0; i < 6; i++)
            cout<< m2.at(0, i) << " ";
    cout << endl;

 

数据2运行结果:

 

二、实验总结:

1.在此次实验中书写类的过程中,部分之前学过的内容如友元函数已经忘记,需要及时复习。

2.在实验任务6中,我将private接口中p的声明改成了double **p,目的是让p指向一个存储元素为指向一维数组指针的一维数组,这样便将二维数组转化成了一维数组求解。(啊这样写应该是可以的吧(小声)(擦汗))