癌症预测(cancer informatics)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675494/
Applications of Machine Learning in Cancer Prediction and Prognosis
患者的年龄、健康状况、癌症的位置和类型、家族史、饮食、体重(肥胖)、高风险习惯(吸烟、酗酒)、接触环境致癌物(紫外线辐射、氡、石棉、多氯联苯)。
分子生物学标志:
体细胞突变(p53, BRCA1, BRCA2)、肿瘤蛋白的显现和表现(MUC1, HER2, PSA)、肿瘤的化学环境(缺氧的、氧含量低的)。
基因组数据:(snps\mutations\microarrays)
蛋白质组数据:(specific protein biomarkers, 2D gel data, mass spectral analyses)
临床数据:(histology组织学, tumor staging肿瘤分期, tumor size, age, weight, risk behavior, etc.)
有可能分开使用以上三种数据,也会将3种数据混合使用
Molecular biomarkers, such as somatic mutations in certain genes (p53, BRCA1, BRCA2), the appearance or expression of certain tumor proteins (MUC1, HER2, PSA) or the chemical environment of the tumor (anoxic, hypoxic) have been shown to serve as very powerful prognostic or predictive indicators
1、癌症易感性的预测 2、癌症复发性的预测 3、癌症存活时间预测(生存时间预测)
we found that most studies were concerned with three “predictive” foci or clinical endpoints: 1) the prediction of cancer susceptibility (i.e. risk assessment); 2) the prediction of cancer recurrence and 3) the prediction of cancer survivability.