第七次作业:图的表示与遍历

这个作业属于哪个课程 https://edu.cnblogs.com/campus/qdu/DS2020
这个作业要求在哪里 https://edu.cnblogs.com/campus/qdu/DS2020/homework/11472
这个作业的目标 图的邻接矩阵和邻接表示、深度优先和广度优先搜索方法
学号 2018204261

一、实验目的

1、掌握图的邻接矩阵和邻接表表示
2、掌握图的深度优先和广度优先搜索方法
3、理解图的应用方法

二、实验预习

说明以下概念
1、深度优先搜索遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次.
2、广度优先搜索遍历:从某个顶点V出发,访问该顶点的所有邻接点V1,V2..VN;从邻接点V1,V2...VN出发,再访问他们各自的所有邻接点;重复上述步骤,直到所有的顶点都被访问过。
3、拓扑排序:对一个有向无环图G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。
4、最小生成树:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。
5、最短路径:用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

三、实验内容和要求

1、阅读并运行下面程序,根据输入写出运行结果。

#include<stdio.h>

#define N 20
#define TRUE 1
#define FALSE 0

int visited[N];

typedef struct{   /*队列的定义*/ 
	int data[N];
	int front,rear;
}queue;

typedef struct{  /*图的邻接矩阵*/ 
	int vexnum,arcnum;
	char vexs[N];
	int arcs[N][N];
}graph;

void createGraph(graph *g);/*建立一个无向图的邻接矩阵*/
void dfs(int i,graph *g);/*从第i歌顶点出发深度优先搜索*/ 
void tdfs(graph *g);     /*深度优先搜索整个图*/ 
void bfs(int k,graph *g);/*从第k个顶点广度优先搜索整个图*/ 
void tbfs(graph *g);     /*广度优先搜索整个图*/ 
void init_visit();     /*初始化访问标识数组*/

void createGraph(graph *g){ /*建立一个无向图的邻接矩阵*/ 
	int i,j;
	char v;
	g->vexnum=0;
	g->arcnum=0;
	i=0;
	printf("输出顶点序列(以#结束):\n");
	while(v=getchar()!='#')
	{
		g->vexs[i]=v;   /*读入顶点信息*/ 
		i++;
	}
	g->vexnum=i;      /*顶点数目*/
	for(i=0;i<g->vexnum;i++)    /*邻接矩阵初始化*/ 
	    for(j=0;j<g->vexnum;j++)
	       g->arcs[i][j]=0;
	printf("输入的信息:\n");
	scanf("%d,%d",&i,&j);  /*读入边i,j*/
	while(i!=j)            /*读入i,j为-1时结束*/
	{
		g->arcs[i][j]=1;
		g->arcs[j][i]=1;
		scanf("%d,%d",&i,&j);
		   }       
}

void dfs(int i,graph *g){   /*从第i个顶点出发深度优先搜索*/ 
	int j;
	printf("%c",g->vexs[i]);
	visited[i]=TRUE;
	for(j=0;j<g->vexnum;j++)
	    if((g->arcs[i][j]==1)&&(!visited[j]))
	    dfs(j,g);
}

void tdfs(graph *g){       /*深度优先搜索整个图*/ 
	int i;
	printf("\n从顶点%c开始深度优先搜索序列:",g->vexs[0]);
	for(i=0;i<g->vexnum;i++)
	    if(visited[i]!=TRUE)
	    dfs(i,g);
}

void bfs(int k,graph *g){  /*从第k个顶点出发广度优先搜索*/ 
	int i,j;
	queue qlist,*q;
	q=&qlist;
	q->rear=0;
	q->front=0;
	printf("%c",g->vexs[k]);
	visited[k]=TRUE;
	q->data[q->rear]=k;
	q->rear=(q->rear+1)%N;
	while(q->rear!=q->front)
	{
		i=q->data[q->front];
		q->front=(q->front+1)%N;
		for(j=0;j<g->vexnum;j++)
		    if((g->arcs[i][j]==1)&&(!visited[j]))
		    {
		    	printf("%c",g->vexs[j]);
		    	visited[j]=TRUE;
		    	q->data[q->rear]=j;
		    	q->rear=(q->rear+1)%N;
			}
	}
}

void tbfs(graph *g){    /*广度优先搜索整个图*/ 
	int i;
	printf("\n从顶点%c开始广度优先搜索序列:",g->vexs[0]);
	for(i=0;i<g->vexnum;i++)
	    if(visited[i]!=TRUE)
	    bfs(i,g);
}

void init_visit(){        /*初始化访问标识数组*/
	int i;
	for(i=0;i<N;i++)
	    visited[i]=FALSE;
}

int main(){
	graph ga;
	int i,j;
	createGraph(&ga);
	printf("无向图的邻接矩阵:\n");
	for(i=0;i<ga.vexnum;i++)
	{
		for(j=0;j<ga.vexnum;j++)
		    printf("%3d",ga.arcs[i][j]);
		printf("\n");    
	}
	init_visit();
	tdfs(&ga);
	init_visit();
	tbfs(&ga);
	return 0;
}

·根据右图的结构验证实验,

输入:
ABCDEFGH#
0,1
0,2
0,5
1,3
1,4
2,5
2,6
3,7
4,7
-1,-1

·运行结果:

2、阅读并运行下面程序,补充拓扑排序算法。

#include<stdio.h>
#include<malloc.h>

#define N 20

typedef struct edgenode{    /*图的邻接表:邻接链表结点*/ 
	int adjvex;  /*顶点序号*/
	struct edgenode *next;  /*下个结点的指针*/ 
}edgenode;

typedef struct vnode{   /*图的邻接表:邻接表*/ 
	char data;  /*顶点信息*/
	int ind;    /*顶点入度*/
	struct edgenode *link; /*指向邻接链表指针*/ 
}vnode;

void createGraph_list(vnode adjlist[],int *p);/*建立有向图的邻接表*/
void topSort(vnode g[],int n);/*拓扑排序*/

void createGraph_list(vnode adjlist[],int *p){
	int i,j,n,e;
	char v;
	edgenode *s;
	i=0;n=0;e=0;
	printf("输入顶点序列(以#结束):\n");
	while((v=getchar())!='#')
	{
		adjlist[i].data=v;   /*读入顶点信息*/
		adjlist[i].link=NULL;
		adjlist[i].ind=0;
		i++; 
	}
	n=i;
	*p=n;  /*建立邻接链表*/ 
	printf("\n请输入弧的信息(i=-1结束):i,j:\n");
	scanf("%d,%d",&i,&j);
	while(i!=-1)
	{
		s=(struct edgenode*)malloc(sizeof(edgenode));
		s->adjvex=j;
		s->next=adjlist[i].link;
		adjlist[i].link=s;
		adjlist[j].ind++;/*顶点j的入度加1*/
		e++;
		scanf("%d,%d",&i,&j); 
	}
	printf("邻接表:");
	for(i=0;i<n;i++)  /*输出邻接表*/ 
	{
		printf("\n%c,%d",adjlist[i].data,adjlist[i].ind);
		s=adjlist[i].link;
		while(s!=NULL)
		{
			printf("->%d",s->adjvex);
			s=s->next;
		}
	}
}

void topSort(vnode g[],int n){
	 printf("输入拓扑排序顶点序列:\n");
    int i,j,k,m=0,top=-1;
    struct  edgenode *p;
    for (i=0; i<=n; i++)    //将度为零的顶点入栈
        if (g[i].ind==0)
        {
            g[i].ind=top;
            top=i;
        }
    while (top!=-1)     //栈不为空
    {
        j=top;
        top=g[top].ind;     //出栈
        printf("%c",g[j].data);
        m++;
        p=g[j].link;
        while (p)       //删除该节点的所有边
        {
            k=p->adjvex;
            g[k].ind--;
            if (g[k].ind==0)        //将入度为零的点入栈
            {
                g[k].ind=top;
                top=k;
            }
            p=p->next;
        }
    }
 if (m<n)
  printf("该图存在环\n");
}

int main(){
	vnode adjlist[N];
	int n,*p;
	p=&n;
	createGraph_list(adjlist,p);
	return 0;
}

·根据输入,输出有向图的拓扑排序序列。并画出有向图。输入:
ABCDEF#
0,1
1,2
2,3
4,1
4,5
-1,-1
· 运行结果:

3、阅读并运行下面程序。

#include<stdio.h>
 
#define N 20
#define TRUE 1
#define INF 32766                    /*邻接矩阵中的无穷大元素*/
#define INFIN 32767                  /*比无穷大元素大的数*/

typedef struct{ /*图的邻接矩阵*/
    int vexnum,arcnum;
    char vexs[N];
    int arcs[N][N];
}
graph;

void createGraph_w(graph *g,int flag);
void prim(graph *g,int u);
void dijkstra(graph g,int v);
void showprim();
void showdij();

/*建带权图的邻接矩阵,若flag为1则为无向图,flag为0为有向图*/
void createGraph_w(graph *g,int flag){
    int i,j,w;
    char v;
    g->vexnum=0;
    g->arcnum=0;
    i=0;
    printf("输入顶点序列(以#结束):\n");
    while((v=getchar())!='#')
    {
        g->vexs[i]=v;        /*读入顶点信息*/
        i++;
    }
    g->vexnum=i;
    for(i=0;i<6;i++)        /*邻接矩阵初始化*/
        for(j=0;j<6;j++)
            g->arcs[i][j]=INF;
    printf("输入边的信息:\n");
    scanf("%d,%d,%d",&i,&j,&w);  /*读入边(i,j,w)*/
    while(i!=-1)              /*读入i为-1时结束*/
    {
        g->arcs[i][j]=w;
        if(flag==1)
            g->arcs[j][i]=w;
        scanf("%d,%d,%d",&i,&j,&w);
    }
}

void prim(graph *g,int u)/*出发顶点u*/
{
    int lowcost[N],closest[N],i,j,k,min;
    for(i=0;i<g->vexnum;i++)  /*求其他顶点到出发顶点u的权*/
    {
        lowcost[i]=g->arcs[u][i];
        closest[i]=u;
    }
    lowcost[u]=0;
    for(i=1;i<g->vexnum;i++)    /*循环求最小生成树中的各条边*/
    {   min=INFIN;
        for(j=0;j<g->vexnum;j++)   /*选择得到一条代价最小的边*/
            if(lowcost[j]!=0&&lowcost[j]<min)
            {
                min=lowcost[j];
                k=j;
            }
        printf("(%c,%c)--%d\n",g->vexs[closest[k]],g->vexs[k],lowcost[k]);      /*输出该边*/
        lowcost[k]=0;       /*顶点k纳入最小生成树 */
        for(j=0;j<g->vexnum;j++)  /*求其他顶点到顶点k 的权*/
            if(g->arcs[k][j]!=0&&g->arcs[k][j]<lowcost[j])
            {
                lowcost[j]=g->arcs[k][j];
                closest[j]=k;
            }
    }
}

void printPath(graph g,int startVex,int EndVex)
{
    int path[N][N],stack[N],top=0;   /*堆栈*/
    int i,k,j;
    int flag[N];  /*输出路径顶点标志*/
    k=EndVex;
    for (i=0;i<g.vexnum;i++) flag[i]=0;
    j=startVex;
    printf("%c",g.vexs[j]);
    flag[j]=1;
    stack[top++]=k;
    while (top>0) /*找j到k的路径*/
    {
        for (i=0;i<g.vexnum;i++)
        {
            if (path[k][i]==1 && flag[i]==0) /*j到k的路径含有i顶点*/
            {
                if (g.arcs[j][i]!=INF )   /*j到i的路径含有中间顶点*/
                {
                    printf("-> %c(%d) ",g.vexs[i],g.arcs[j][i]); 
                            /*输出j到k的路径的顶点i*/
                    flag[i]=1;
                    j=i;
                    k=stack[--top];
                    break;
                }
                else
                {
                    if (i!=k) stack[top++]=i;  /*break;*/
                }
            }
        }
    }
}
void dijkstra(graph g,int v){  /*dijkstra算法求单源最短路径*/
    int path[N][N],dist[N],s[N];
    int mindis,i,j,u,k;
    for(i=0;i<g.vexnum;i++){
        dist[i]=g.arcs[v][i];
        s[i]=0;
        for(j=0;j<g.vexnum;j++)
            path[i][j]=0;
        if(dist[i]<INF){
            path[i][v]=1;
            path[i][i]=1;
        }
    }
    dist[v]=0;
    s[v]=1;
    for(i=0,u=1;i<g.vexnum;i++){
        mindis=INFIN;
        for(j=0;j<g.vexnum;j++)
            if(s[j]==0)
                if(dist[j]<mindis){
                    u=j;
                    mindis=dist[j];
                }
        s[u]=1;
        for(j=0;j<g.vexnum;j++)
            if((s[j]==0)&&dist[u]+g.arcs[u][j]<dist[j]){
                dist[j]=dist[u]+g.arcs[u][j];
                for(k=0;k<g.vexnum;k++)
                    path[j][k]=path[u][k];
                path[j][j]=1;
            }
    }
    printf("\n顶点%c->到各顶点的最短路径\n",g.vexs[v]);
    for(i=0;i<g.vexnum;i++){
        printf("\n顶点%c->顶点%c:",g.vexs[v],g.vexs[i]);
        if(dist[i]==INF||dist[i]==0)
            printf("无路径");
        else{
            printf("%d  ",dist[i]);
            printf("经过顶点:");
            printPath(g,v,i);  /*输出v到i的路径*/
        }
    }
}

void showprim()/*最小生成树prim算法演示*/
{
    graph ga;
    createGraph_w(&ga,1);
    prim(&ga,0);
}

void showdij(){   /*dijstra算法演示*/
    graph ga;
    createGraph_w(&ga,0);
    dijkstra(ga,0);
}

int main(){
showprim(); /*prim算法演示*/
getchar();
    showdij();  /*dijstra算法演示*/
    return 0;
}

·下面的输入分别验证prim算法和dijstra算法。输入实例的第一部分为无向图,求其最小生成树;输入的第二部分为有向图,求其最短路径。

ABCDEF#
0,1,6
0,2,1
0,3,5
1,2,5
1,4,3
2,3,5
2,4,6
2,5,4
3,5,2
4,5,6
-1,-1,-1

ABCDEF#
0,2,10
0,5,100
0,4,30
1,2,5
2,3,50
3,4,20
3,5,10
4,3,20
4,5,60
-1,-1,-1

·运行结果:(并画出两个图)

最小生成树

最短路径

四、实验小结

深度优先和广度优先搜索方法,对于带权有向图的最短路径、无向图的最小生成树

posted @ 2020-11-12 12:29  山海志  阅读(280)  评论(0)    收藏  举报