1 /*
2 有n件物品和一个容量为v的背包,第i件物品的费用是c[i],价值是w[i]
3 这些物品被分为若干组,每组中的物品互相冲突,即一组中只能取一件物品
4 将哪些物品装入背包使得总价值最大
5 dp[k][v] 表示前k组物品花费容量v能取到的最大值
6 dp[k][v] = max(dp[k-1][v],dp[k-1][v-c[i]]+w[i])//物品i属于第k组
7 for(i=1; i<=k; ++i)
8 for(j=v;j>=0; ++j)
9 for(所有的l属于组k)
10 if(j>=c[i])
11 dp[i][j] = max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);
12
13 要注意for(j=v;j>=0; ++j)一定要在循环for(所有的l属于组k)之外
14 这两个循环的意义是对于每个容量j,取组k内的哪个物品更能得到最大价值
15 同样可以压缩为一维的状态
16 for(i=1; i<=k; ++i)
17 for(j=v;j>=0; ++j)
18 for(所有的l属于组k)
19 if(j>=c[i])
20 dp[j] = max(dp[j],dp[j-c[i]]+w[i]);
21
22 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1712
23 题意:给定n门课和m天,和一个数组a[i][j],(1<=i<=n,1<=j<=m)
24 表示在第i门课花费j天的收益,可知n门课即n组,组内为对第i门课花费1-->m天
25 收益,即组内只能取一个数据。所以是分组背包问题
26 */
27 #include <stdio.h>
28 #include <string.h>
29 const int N = 111;
30 int dp[N],a[N][N];
31 int n,m;
32 inline int max(const int &a, const int &b)
33 {
34 return a < b ? b : a;
35 }
36 int main()
37 {
38 int i,j,k;
39 while(scanf("%d%d",&n,&m)!=EOF)
40 {
41 if(n==0 && m==0) break;
42 memset(dp,0,sizeof(dp));
43 for(i=1; i<=n; ++i)
44 for(j=1; j<=m; ++j)
45 scanf("%d",&a[i][j]);
46 for(i=1; i<=n; ++i)
47 for(j=m; j>=0; --j)
48 for(k=1; k<=j; ++k)
49 {
50 dp[j] = max(dp[j],dp[j-k]+a[i][k]);
51 }
52 printf("%d\n",dp[m]);
53 }
54 return 0;
55 }