4 Values whose Sum is 0
| Time Limit: 15000MS | Memory Limit: 228000K | |
| Total Submissions: 20863 | Accepted: 6282 | |
| Case Time Limit: 5000MS | ||
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
Source
题意:从4列数据每列选1个使之和为0,求可挑选的方案总数。
思路:将第1,2列和第3,4列的和全部求出来,排序,然后二分直至找到和为0。
# include <stdio.h>
# include <algorithm>
# define MAXN 4000
using namespace std;
int a[MAXN][4], b[MAXN*MAXN], c[MAXN*MAXN];
int main()
{
int n, l, r, sum, tmp, cnt;
while(~scanf("%d",&n))
{
sum = cnt = 0;
for(int i=0; i<n; ++i)
scanf("%d%d%d%d",&a[i][0],&a[i][1],&a[i][2],&a[i][3]);
for(int i=0; i<n; ++i)
for(int j=0; j<n; ++j)
{
b[cnt] = a[i][0] + a[j][1];
c[cnt++] = a[i][2] + a[j][3];
}
sort(b, b+cnt);
sort(c, c+cnt);
for(int i=0; i<cnt; ++i)
{
tmp = 0;
l = 0;
r = cnt-1;
while(l<r)
{
int mid = (l+r)>>1;
if(b[i]+c[mid]<0)
l = mid + 1;
else
r = mid;
}
if(r==0&&(b[i]+c[r]!=0) || l==cnt-1&&(b[i]+c[r]!=0))continue;
if(b[i]+c[r]==0) ++tmp;
for(int k=r-1; k>=0&&(b[i]+c[k])==0; --k) ++tmp;//符合情况的c[r]可能扎堆在一起,向前搜索。
for(int k=r+1; k<cnt&&(b[i]+c[k])==0; ++k) ++tmp;//向后搜索。
sum += tmp;
for(;i+1<cnt&&b[i]==b[i+1]; ++i) sum += tmp;//计算相同的b[i]。
}
printf("%d\n",sum);
}
return 0;
}

浙公网安备 33010602011771号