junior19

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

A Bit Fun

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3079    Accepted Submission(s): 1535


Problem Description
There are n numbers in a array, as a0, a1 ... , an-1, and another number m. We define a function f(i, j) = ai|ai+1|ai+2| ... | aj . Where "|" is the bit-OR operation. (i <= j)
The problem is really simple: please count the number of different pairs of (i, j) where f(i, j) < m.
 

Input
The first line has a number T (T <= 50) , indicating the number of test cases.
For each test case, first line contains two numbers n and m.(1 <= n <= 100000, 1 <= m <= 230) Then n numbers come in the second line which is the array a, where 1 <= ai <= 230.
 

Output
For every case, you should output "Case #t: " at first, without quotes. The t is the case number starting from 1.
Then follows the answer.
 

Sample Input
2 3 6 1 3 5 2 4 5 4
 

Sample Output
Case #1: 4 Case #2: 0
 

Source

2013 ACM/ICPC Asia Regional Chengdu Online


题意:求有多少个子区间满足区间内的数按位或结果小于m。

思路:a[i][j]表示前i个数二进制第j位有多少个1,然后二分即可。

# include <stdio.h>
# include <string.h>
# define MAXN 100000

int a[MAXN+1][36];
int judge(int i, int mid)
{
    int sum = 0;
    for(int j=0; j<36; ++j)
        if(a[mid][j]-a[i-1][j])
            sum |= (1<<j);
    return sum;
}

int main()
{
    int t, n, m, num,cas=1;
    scanf("%d",&t);
    while(t--)
    {
        long long ans = 0;
        memset(a, 0, sizeof(a));
        scanf("%d%d",&n,&m);
        for(int i=1; i<=n; ++i)
        {
            int len = 0;
            scanf("%d",&num);
            for(int j=0; j<36; ++j)
                a[i][j] += a[i-1][j];
            while(num)
            {
                a[i][len++] += num&1;
                num >>= 1;
            }
        }
        for(int i=1; i<=n; ++i)
        {
            int l = i;
            int r = n;
            while(l <= r)
            {
                int mid = (l+r)>>1;
                if(judge(i, mid) < m)
                    l = mid + 1;
                else
                    r = mid - 1;
            }
            ans += r - i + 1;
        }
        printf("Case #%d: %lld\n",cas++,ans);
    }
    return 0;
}


posted on 2017-02-19 00:02  junior19  阅读(119)  评论(0)    收藏  举报