Synchronized原理

synchronized代码块底层原理

现在我们重新定义一个synchronized修饰的同步代码块,在代码块中操作共享变量i,如下

public class SyncCodeBlock {

   public int i;

   public void syncTask(){
       //同步代码块
       synchronized (this){
           i++;
       }
   }
}

编译上述代码并使用javap反编译后得到字节码如下:

Classfile /Users/zejian/Downloads/Java8_Action/src/main/java/com/zejian/concurrencys/SyncCodeBlock.class
  Last modified 2017-6-2; size 426 bytes
  MD5 checksum c80bc322c87b312de760942820b4fed5
  Compiled from "SyncCodeBlock.java"
public class com.zejian.concurrencys.SyncCodeBlock
  minor version: 0
  major version: 52
  flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
  //........省略常量池中数据
  //构造函数
  public com.zejian.concurrencys.SyncCodeBlock();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=1, locals=1, args_size=1
         0: aload_0
         1: invokespecial #1                  // Method java/lang/Object."<init>":()V
         4: return
      LineNumberTable:
        line 7: 0
  //===========主要看看syncTask方法实现================
  public void syncTask();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=3, args_size=1
         0: aload_0
         1: dup
         2: astore_1
         3: monitorenter  //进入同步方法
         4: aload_0
         5: dup
         6: getfield                  
         9: iconst_1
        10: iadd
        11: putfield                 
        14: aload_1
        15: monitorexit   //退出同步方法
        16: goto          24
        19: astore_2
        20: aload_1
        21: monitorexit //退出同步方法
        22: aload_2
        23: athrow
        24: return
      Exception table:
      //省略其他字节码.......
}
SourceFile: "SyncCodeBlock.java"

从字节码中可知同步语句块的实现使用的是monitorenter 和 monitorexit 指令,其中monitorenter指令指向同步代码块的开始位置,monitorexit指令则指明同步代码块的结束位置,当执行monitorenter指令时,当前线程将试图获取 objectref(即对象锁) 所对应的 monitor 的持有权,当 objectref 的 monitor 的进入计数器为 0,那线程可以成功取得 monitor,并将计数器值设置为 1,取锁成功。如果当前线程已经拥有 objectref 的 monitor 的持有权,那它可以重入这个 monitor (关于重入性稍后会分析),重入时计数器的值也会加 1。倘若其他线程已经拥有 objectref 的 monitor 的所有权,那当前线程将被阻塞,直到正在执行线程执行完毕,即monitorexit指令被执行,执行线程将释放 monitor(锁)并设置计数器值为0 ,其他线程将有机会持有 monitor 。值得注意的是编译器将会确保无论方法通过何种方式完成,方法中调用过的每条 monitorenter 指令都有执行其对应 monitorexit 指令,而无论这个方法是正常结束还是异常结束。为了保证在方法异常完成时 monitorenter 和 monitorexit 指令依然可以正确配对执行,编译器会自动产生一个异常处理器,这个异常处理器声明可处理所有的异常,它的目的就是用来执行 monitorexit 指令。从字节码中也可以看出多了一个monitorexit指令,它就是异常结束时被执行的释放monitor 的指令。

synchronized方法底层原理

方法级的同步是隐式,即无需通过字节码指令来控制的,它实现在方法调用和返回操作之中。JVM可以从方法常量池中的方法表结构(method_info Structure) 中的 ACC_SYNCHRONIZED 访问标志区分一个方法是否同步方法。当方法调用时,调用指令将会 检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先持有monitor(虚拟机规范中用的是管程一词), 然后再执行方法,最后再方法完成(无论是正常完成还是非正常完成)时释放monitor。在方法执行期间,执行线程持有了monitor,其他任何线程都无法再获得同一个monitor。如果一个同步方法执行期间抛 出了异常,并且在方法内部无法处理此异常,那这个同步方法所持有的monitor将在异常抛到同步方法之外时自动释放。下面我们看看字节码层面如何实现:

public class SyncMethod {

   public int i;

   public synchronized void syncTask(){
           i++;
   }
}

使用javap反编译后的字节码如下:

Classfile /Users/zejian/Downloads/Java8_Action/src/main/java/com/zejian/concurrencys/SyncMethod.class
  Last modified 2017-6-2; size 308 bytes
  MD5 checksum f34075a8c059ea65e4cc2fa610e0cd94
  Compiled from "SyncMethod.java"
public class com.zejian.concurrencys.SyncMethod
  minor version: 0
  major version: 52
  flags: ACC_PUBLIC, ACC_SUPER
Constant pool;

   ...//==================syncTask方法======================
  public synchronized void syncTask();
    descriptor: ()V
    //方法标识ACC_PUBLIC代表public修饰,ACC_SYNCHRONIZED指明该方法为同步方法
    flags: ACC_PUBLIC, ACC_SYNCHRONIZED
    Code:
      stack=3, locals=1, args_size=1
         0: aload_0
         1: dup
         2: getfield      #2                  // Field i:I
         5: iconst_1
         6: iadd
         7: putfield      #2                  // Field i:I
        10: return
      LineNumberTable:
        line 12: 0
        line 13: 10
}
SourceFile: "SyncMethod.java"

从字节码中可以看出,synchronized修饰的方法并没有monitorenter指令和monitorexit指令,取得代之的确实是ACC_SYNCHRONIZED标识,该标识指明了该方法是一个同步方法,JVM通过该ACC_SYNCHRONIZED访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。这便是synchronized锁在同步代码块和同步方法上实现的基本原理。

在Java早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的Mutex Lock来实现的,而操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的synchronized效率低的原因。在Java 6之后Java官方对从JVM层面对synchronized较大优化,所以现在的synchronized锁效率也优化得很不错了,Java 6之后,为了减少获得锁和释放锁所带来的性能消耗,引入了轻量级锁和偏向锁。

--部分内容摘自https://blog.csdn.net/javazejian/article/details/72828483

posted @ 2020-09-08 21:06  Mistolte  阅读(254)  评论(0)    收藏  举报