实验5 多态
实验5
实验任务1
源代码
1 #pragma once 2 3 #include <string> 4 5 // 发行/出版物类:Publisher (抽象类) 6 class Publisher { 7 public: 8 Publisher(const std::string &name_ = ""); // 构造函数 9 virtual ~Publisher() = default; 10 11 public: 12 virtual void publish() const = 0; // 纯虚函数,作为接口继承 13 virtual void use() const = 0; // 纯虚函数,作为接口继承 14 15 protected: 16 std::string name; // 发行/出版物名称 17 }; 18 19 // 图书类: Book 20 class Book: public Publisher { 21 public: 22 Book(const std::string &name_ = "", const std::string &author_ = ""); // 构造函数 23 24 public: 25 void publish() const override; // 接口 26 void use() const override; // 接口 27 28 private: 29 std::string author; // 作者 30 }; 31 32 // 电影类: Film 33 class Film: public Publisher { 34 public: 35 Film(const std::string &name_ = "", const std::string &director_ = ""); // 构造函数 36 37 public: 38 void publish() const override; // 接口 39 void use() const override; // 接口 40 41 private: 42 std::string director; // 导演 43 }; 44 45 46 // 音乐类:Music 47 class Music: public Publisher { 48 public: 49 Music(const std::string &name_ = "", const std::string &artist_ = ""); 50 51 public: 52 void publish() const override; // 接口 53 void use() const override; // 接口 54 55 private: 56 std::string artist; // 音乐艺术家名称 57 };
1 #include <iostream> 2 #include <string> 3 #include "publisher.hpp" 4 5 // Publisher类:实现 6 Publisher::Publisher(const std::string &name_): name {name_} { 7 } 8 9 10 // Book类: 实现 11 Book::Book(const std::string &name_ , const std::string &author_ ): Publisher{name_}, author{author_} { 12 } 13 14 void Book::publish() const { 15 std::cout << "Publishing book《" << name << "》 by " << author << '\n'; 16 } 17 18 void Book::use() const { 19 std::cout << "Reading book 《" << name << "》 by " << author << '\n'; 20 } 21 22 23 // Film类:实现 24 Film::Film(const std::string &name_, const std::string &director_):Publisher{name_},director{director_} { 25 } 26 27 void Film::publish() const { 28 std::cout << "Publishing film <" << name << "> directed by " << director << '\n'; 29 } 30 31 void Film::use() const { 32 std::cout << "Watching film <" << name << "> directed by " << director << '\n'; 33 } 34 35 36 // Music类:实现 37 Music::Music(const std::string &name_, const std::string &artist_): Publisher{name_}, artist{artist_} { 38 } 39 40 void Music::publish() const { 41 std::cout << "Publishing music <" << name << "> by " << artist << '\n'; 42 } 43 44 void Music::use() const { 45 std::cout << "Listening to music <" << name << "> by " << artist << '\n'; 46 }
1 #include <memory> 2 #include <iostream> 3 #include <vector> 4 #include "publisher.hpp" 5 6 void test1() { 7 std::vector<Publisher *> v; 8 9 v.push_back(new Book("Harry Potter", "J.K. Rowling")); 10 v.push_back(new Film("The Godfather", "Francis Ford Coppola")); 11 v.push_back(new Music("Blowing in the wind", "Bob Dylan")); 12 13 for(Publisher *ptr: v) { 14 ptr->publish(); 15 ptr->use(); 16 std::cout << '\n'; 17 delete ptr; 18 } 19 } 20 21 void test2() { 22 std::vector<std::unique_ptr<Publisher>> v; 23 24 v.push_back(std::make_unique<Book>("Harry Potter", "J.K. Rowling")); 25 v.push_back(std::make_unique<Film>("The Godfather", "Francis Ford Coppola")); 26 v.push_back(std::make_unique<Music>("Blowing in the wind", "Bob Dylan")); 27 28 for(const auto &ptr: v) { 29 ptr->publish(); 30 ptr->use(); 31 std::cout << '\n'; 32 } 33 } 34 35 void test3() { 36 Book book("A Philosophy of Software Design", "John Ousterhout"); 37 book.publish(); 38 book.use(); 39 } 40 41 int main() { 42 std::cout << "运行时多态:纯虚函数、抽象类\n"; 43 44 std::cout << "\n测试1: 使用原始指针\n"; 45 test1(); 46 47 std::cout << "\n测试2: 使用智能指针\n"; 48 test2(); 49 50 std::cout << "\n测试3: 直接使用类\n"; 51 test3(); 52 }
运行结果

问题解答
问题1:抽象类机制
(1)是什么决定了 Publisher 是抽象类?用一句话说明,并指出代码中的具体依据。
含有纯虚函数的类是抽象类,Publisher类中声明了publish() 和use() 两个纯虚函数,所以是抽象类。
依据:
1 virtual void publish() const = 0; 2 virtual void use() const = 0;
(2)如果在 main.cpp 里直接写 Publisher p; 能否编译通过?为什么?
不能编译通过,Publisher含有纯虚函数(publish()和use()),因此是抽象类,抽象类不能实例化,因此会产生错误。
问题2:纯虚函数与接口继承
(1) Book 、 Film 、 Music 必须实现哪两个函数才能通过编译?请写出其完整函数声明。
继承自 Publisher 的两个纯虚函数publish()const和use()const:
1 void publish() const override; // 接口 2 void use() const override; // 接口
(2) 在 publisher.cpp 的 Film 类实现中,把两个成员函数实现里的 const 去掉(保持函数体不变),重新
编译,报错信息是什么?
报错信息:

原因:基类Publisher的publish()和use()声明为const成员函数,派生类Film去掉 const,其导致函数签名与基类不匹配。
问题3:运行时多态与虚析构
(1)在 test1() 里, for (Publisher *ptr : v) 中 ptr 的声明类型是什么?
声明类型:Publisher*
(2)当循环执行到 ptr->publish(); 时, ptr 实际指向的对象类型分别有哪些?(按循环顺序写出)
Book,Film,Music
(3)基类 Publisher 的析构函数为何声明为 virtual ?若删除 virtual ,执行 delete ptr; 会出现什么
问题?
原因:这样有利于实现实现多态析构,确保通过基类指针删除派生类对象时,会先调用派生类析构函数,再调用基类析构函数,从而避免内存泄漏的问题。
删除virtual的问题:析构函数不再具备多态性,通过Publisher* 指针删除派生类对象时,只会调用基类Publisher的析构函数,派生类特有的成员不会被正确析构,则会导致内存泄漏。
实验任务2
源代码
1 #pragma once 2 #include <string> 3 4 // 图书描述信息类Book: 声明 5 class Book { 6 public: 7 Book(const std::string &name_, 8 const std::string &author_, 9 const std::string &translator_, 10 const std::string &isbn_, 11 double price_); 12 13 friend std::ostream& operator<<(std::ostream &out, const Book &book); 14 15 private: 16 std::string name; // 书名 17 std::string author; // 作者 18 std::string translator; // 译者 19 std::string isbn; // isbn号 20 double price; // 定价 21 };
1 #pragma once 2 3 #include <string> 4 #include "book.hpp" 5 6 // 图书销售记录类BookSales:声明 7 class BookSale { 8 public: 9 BookSale(const Book &rb_, double sales_price_, int sales_amount_); 10 int get_amount() const; // 返回销售数量 11 double get_revenue() const; // 返回营收 12 13 friend std::ostream& operator<<(std::ostream &out, const BookSale &item); 14 15 private: 16 Book rb; 17 double sales_price; // 售价 18 int sales_amount; // 销售数量 19 };
1 #include <iomanip> 2 #include <iostream> 3 #include <string> 4 #include "book.hpp" 5 6 7 // 图书描述信息类Book: 实现 8 Book::Book(const std::string &name_, 9 const std::string &author_, 10 const std::string &translator_, 11 const std::string &isbn_, 12 double price_):name{name_}, author{author_}, translator{translator_}, isbn{isbn_}, price{price_} { 13 } 14 15 // 运算符<<重载实现 16 std::ostream& operator<<(std::ostream &out, const Book &book) { 17 using std::left; 18 using std::setw; 19 20 out << left; 21 out << setw(15) << "书名:" << book.name << '\n' 22 << setw(15) << "作者:" << book.author << '\n' 23 << setw(15) << "译者:" << book.translator << '\n' 24 << setw(15) << "ISBN:" << book.isbn << '\n' 25 << setw(15) << "定价:" << book.price; 26 27 return out; 28 }
1 #include <iomanip> 2 #include <iostream> 3 #include <string> 4 #include "booksale.hpp" 5 6 // 图书销售记录类BookSales:实现 7 BookSale::BookSale(const Book &rb_, 8 double sales_price_, 9 int sales_amount_): rb{rb_}, sales_price{sales_price_}, sales_amount{sales_amount_} { 10 } 11 12 int BookSale::get_amount() const { 13 return sales_amount; 14 } 15 16 double BookSale::get_revenue() const { 17 return sales_amount * sales_price; 18 } 19 20 // 运算符<<重载实现 21 std::ostream& operator<<(std::ostream &out, const BookSale &item) { 22 using std::left; 23 using std::setw; 24 25 out << left; 26 out << item.rb << '\n' 27 << setw(15) << "售价:" << item.sales_price << '\n' 28 << setw(15) << "销售数量:" << item.sales_amount << '\n' 29 << setw(15) << "营收:" << item.get_revenue(); 30 31 return out; 32 }
1 #include <algorithm> 2 #include <iomanip> 3 #include <iostream> 4 #include <string> 5 #include <vector> 6 #include "booksale.hpp" 7 8 // 按图书销售数量比较 9 bool compare_by_amount(const BookSale &x1, const BookSale &x2) { 10 return x1.get_amount() > x2.get_amount(); 11 } 12 13 void test() { 14 using std::cin; 15 using std::cout; 16 using std::getline; 17 using std::sort; 18 using std::string; 19 using std::vector; 20 using std::ws; 21 22 vector<BookSale> sales_records; // 图书销售记录表 23 24 int books_number; 25 cout << "录入图书数量: "; 26 cin >> books_number; 27 28 cout << "录入图书销售记录\n"; 29 for(int i = 0; i < books_number; ++i) { 30 string name, author, translator, isbn; 31 double price; 32 cout << string(20, '-') << "第" << i+1 << "本图书信息录入" << string(20, '-') << '\n'; 33 cout << "录入书名: "; getline(cin>>ws, name); 34 cout << "录入作者: "; getline(cin>>ws, author); 35 cout << "录入译者: "; getline(cin>>ws, translator); 36 cout << "录入isbn: "; getline(cin>>ws, isbn); 37 cout << "录入定价: "; cin >> price; 38 39 Book book(name, author, translator, isbn, price); 40 41 double sales_price; 42 int sales_amount; 43 44 cout << "录入售价: "; cin >> sales_price; 45 cout << "录入销售数量: "; cin >> sales_amount; 46 47 BookSale record(book, sales_price, sales_amount); 48 sales_records.push_back(record); 49 } 50 51 // 按销售册数排序 52 sort(sales_records.begin(), sales_records.end(), compare_by_amount); 53 54 // 按销售册数降序输出图书销售信息 55 cout << string(20, '=') << "图书销售统计" << string(20, '=') << '\n'; 56 for(auto &record: sales_records) { 57 cout << record << '\n'; 58 cout << string(40, '-') << '\n'; 59 } 60 } 61 62 int main() { 63 test(); 64 }
运行结果

问题解答
问题1:重载运算符<<
(1)找出运算符 << 被重载了几处?分别用于什么类型?
Book类:
std::ostream& operator<<(std::ostream &out, const Book &book)
Booksale类:
std::ostream& operator<<(std::ostream &out, const BookSale &item)
(2)找出使用重载 << 输出对象的代码,写在下面。
输出Book对象:
out << item.rb << '\n';
输出BookSale对象:
for(auto &record: sales_records) { cout << record << '\n'; cout << string(40, '-') << '\n'; }
问题2:图书销售统计
(1)图书销售记录"按销售数量降序排序",代码是如何实现的?
主要分为两步,使用了标准库sort函数和自定义函数:
1.自定义降序比较函数:
bool compare_by_amount(const BookSale &x1, const BookSale &x2) { return x1.get_amount() > x2.get_amount(); }
2.使用标准库sort函数完成排序:
sort(sales_records.begin(), sales_records.end(), compare_by_amount);
(2)拓展(选答*):如果使用lambda表达式,如何实现"按销售数量降序排序"?
不用再定义一个compare_by_amount函数,直接将lambda表达式作为sort的第三个参数就行,lambda表达式的参数列表(const BookSale &x1, const BookSale &x2)对应比较函数的参数,函数体return x1.get_amount() > x2.get_amount()与原先比较函数逻辑一致,就实现降序排序,代码:
1 sort(sales_records.begin(), sales_records.end(), 2 [](const BookSale &x1, const BookSale &x2) { 3 return x1.get_amount() > x2.get_amount(); 4 });
实验任务3
(自行练习,无需写入实验博客文档)
实验任务4
源代码
1 #ifndef PET_HPP 2 #define PET_HPP 3 4 #include <string> 5 6 class MachinePet { 7 private: 8 std::string nickname; 9 10 public: 11 MachinePet(const std::string& name) : nickname(name) {} 12 std::string get_nickname() const { 13 return nickname; 14 } 15 16 virtual std::string talk() const = 0; 17 virtual ~MachinePet() = default; 18 }; 19 20 class PetCat : public MachinePet { 21 public: 22 PetCat(const std::string& name) : MachinePet(name) {} 23 std::string talk() const override { 24 return "喵喵~"; // 可根据需求修改为 "meow" 等 25 } 26 }; 27 28 class PetDog : public MachinePet { 29 public: 30 PetDog(const std::string& name) : MachinePet(name) {} 31 std::string talk() const override { 32 return "汪汪!"; // 可根据需求修改为 "woof" 等 33 } 34 }; 35 #endif // PET_HPP
1 #include <iostream> 2 #include <memory> 3 #include <vector> 4 #include <vector> 5 #include "pet.hpp" 6 7 void test1() { 8 std::vector<MachinePet*> pets; 9 10 pets.push_back(new PetCat("miku")); 11 pets.push_back(new PetDog("da huang")); 12 13 for (MachinePet* ptr : pets) { 14 std::cout << ptr->get_nickname() << " says " << ptr->talk() << '\n'; 15 delete ptr; // 须手动释放资源 16 } 17 } 18 19 void test2() { 20 std::vector<std::unique_ptr<MachinePet>> pets; 21 22 pets.push_back(std::make_unique<PetCat>("miku")); 23 pets.push_back(std::make_unique<PetDog>("da huang")); 24 25 for (auto const& ptr : pets) 26 std::cout << ptr->get_nickname() << " says " << ptr->talk() << '\n'; 27 } 28 29 void test3() { 30 // MachinePet pet("little cutie"); // 编译报错:无法定义抽象类对象 31 32 const PetCat cat("miku"); 33 std::cout << cat.get_nickname() << " says " << cat.talk() << '\n'; 34 35 const PetDog dog("da huang"); 36 std::cout << dog.get_nickname() << " says " << dog.talk() << '\n'; 37 } 38 39 int main() { 40 std::cout << "测试1:使用原始指针\n"; 41 test1(); 42 43 std::cout << "\n测试2:使用智能指针\n"; 44 test2(); 45 46 std::cout << "\n测试3:直接使用类\n"; 47 test3(); 48 }
运行结果

实验任务4
源代码
1 #ifndef COMPLEX_HPP 2 #define COMPLEX_HPP 3 4 #include <iostream> 5 6 template<typename T> 7 class Complex; 8 9 template<typename T> 10 Complex<T> operator+(const Complex<T>& a, const Complex<T>& b); 11 12 template<typename T> 13 bool operator==(const Complex<T>& a, const Complex<T>& b); 14 15 template<typename T> 16 std::ostream& operator<<(std::ostream& os, const Complex<T>& c); 17 18 template<typename T> 19 std::istream& operator>>(std::istream& is, Complex<T>& c); 20 21 template<typename T> 22 class Complex { 23 private: 24 T real; 25 T imag; 26 27 public: 28 Complex() : real(0), imag(0) {} 29 Complex(T r, T i) : real(r), imag(i) {} 30 Complex(const Complex<T>& other) : real(other.real), imag(other.imag) {} 31 32 T get_real() const { return real; } 33 T get_imag() const { return imag; } 34 35 Complex<T>& operator+=(const Complex<T>& other) { 36 real += other.real; 37 imag += other.imag; 38 return *this; 39 } 40 41 friend Complex<T> operator+ <>(const Complex<T>& a, const Complex<T>& b); 42 friend bool operator== <>(const Complex<T>& a, const Complex<T>& b); 43 friend std::ostream& operator<< <>(std::ostream& os, const Complex<T>& c); 44 friend std::istream& operator>> <>(std::istream& is, Complex<T>& c); 45 }; 46 47 template<typename T> 48 Complex<T> operator+(const Complex<T>& a, const Complex<T>& b) { 49 return Complex<T>(a.real + b.real, a.imag + b.imag); 50 } 51 52 template<typename T> 53 bool operator==(const Complex<T>& a, const Complex<T>& b) { 54 return (a.real == b.real) && (a.imag == b.imag); 55 } 56 57 template<typename T> 58 std::ostream& operator<<(std::ostream& os, const Complex<T>& c) { 59 os << c.real; // 先输出实部 60 if (c.imag > 0) { 61 os << " + " << c.imag << "i"; 62 } 63 else if (c.imag < 0) { 64 os << " - " << (-c.imag) << "i"; 65 } 66 return os; 67 } 68 69 template<typename T> 70 std::istream& operator>>(std::istream& is, Complex<T>& c) { 71 is >> c.real >> c.imag; 72 return is; 73 } 74 75 #endif // COMPLEX_HPP
1 #include <iostream> 2 #include "Complex.hpp" 3 4 void test1() { 5 using std::cout; 6 using std::boolalpha; 7 8 Complex<int> c1(2, -5), c2(c1); 9 10 cout << "c1 = " << c1 << '\n'; 11 cout << "c2 = " << c2 << '\n'; 12 cout << "c1 + c2 = " << c1 + c2 << '\n'; 13 14 c1 += c2; 15 cout << "c1 = " << c1 << '\n'; 16 cout << boolalpha << (c1 == c2) << '\n'; 17 } 18 19 void test2() { 20 using std::cin; 21 using std::cout; 22 23 Complex<double> c1, c2; 24 cout << "Enter c1 and c2: "; 25 cin >> c1 >> c2; 26 cout << "c1 = " << c1 << '\n'; 27 cout << "c2 = " << c2 << '\n'; 28 29 const Complex<double> c3(c1); 30 cout << "c3.real = " << c3.get_real() << '\n'; 31 cout << "c3.imag = " << c3.get_imag() << '\n'; 32 } 33 34 int main() { 35 std::cout << "自定义类模板Complex测试1: \n"; 36 test1(); 37 38 std::cout << "\n自定义类模板Complex测试2: \n"; 39 test2(); 40 }
运行结果

实验总结
本次实验通过在继承的基础上运用了类模板的定义与实例化方法,实践了运算符重载,明白了编译器将表达式转换为运算符函数调用的规则,同时学会了(纯)虚函数和抽象类的定义与使用,还能结合具体的继承场景如出版物类和模拟宠物类,通过继承、虚函数与抽象类实现接口继承和运行时多态的综合运用,基本能够完成实验任务。
浙公网安备 33010602011771号